This research has been supported by:

VICEPRESIDENCIA TERCERA DEL GOBIERNO MINISTERIO PARA LA TRANSICIÓN ECC Y EL RETO DEMOGRÁFICO

Plan de Recuperación, Transformación y Resiliencia

Funded by the European Union NextGenerationEU

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Modeling of secondary organic aerosol formation: how much do the choices of chemical mechanism and parameterization really matter?

ITM, Copenhagen, 17/10/2024

Camille Mouchel-Vallon, Hervé Petetin, Alessio Melli, and Oriol Jorba

Air quality: secondary organic aerosol

- Significant contribution of organics to particulate matter
- Crucial importance of representing formation of secondary organic aerosol (SOA)

Jimenez et al. (2009)

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Expected representation of SOA formation

Condensation of low volatility organics

Only done with sufficiently detailed chemical mechanisms (MCM, GECKO-A, ...)

Large choice of gas phase mechanisms

Carbon bond, RACM, SAPRC, ...

Focused on the impact of VOCs on ozone

Oxidized Volatile Secondary Organic Compounds Organic Aerosol Low volatility Gaseous oxidation **Volatile Organic** Compounds **Biogenic** and anthropogenic emissions

SOA formation in practice

A parametrization running independently of the gas phase mechanism

2 product models, VBS, 2D VBS, SOM, ...

More complex SOA parametrization also depend on the modeled **chemical regime** (NOx vs HO₂) for particle phase aging

Atmospheric Evolution of Organics : chemical mechanisms comparisons

How to compare the impact of different combinations of chemical mechanism + SOA parametrization on SOA formation?

Atmospheric Evolution of Organics : chemical mechanisms comparisons

The CAMP boxmodel (Dawson et al., 2022)

A boxmodel based on the CAMP (Chemistry Across Multiple Phases) atmospheric chemistry framework

Modular chemistry: easy to switch mechanisms, parametrizations

Parallel capabilities: run many boxes in parallel, with different initialization

Let's play with initial NOx, a-pinene and POA

Let's play with initial NOx, a-pinene and POA

Let's play with initial NOx, a-pinene and POA

SOA formation sensitivities: CB05 vs CB6 ? + 2 products

SOA formation sensitivities: CB05 vs CB6 ? + 2 products

SOA formation sensitivity quantification needed Centro Nacional de Supercomputacio

Supercomputing

Center

Sensitivities: introduction to IVARS

(inspired by) **Integrated Variogram Across a Range of Scales** Razavi and Gupta (2016a, b)

Estimate variogram from variances of all pairs of points separated by a distance h in the considered dimension

$$\gamma(h) = \frac{1}{2N(h)} \sum_{(i,j) \in N(h)} (y(x_i) - y(x_j))^2$$

Integrate the variogram to the desired sensitivity scale H

 $\Gamma(H) = \int_{0}^{H} \gamma(h) dh$

repeat for each factor

Sensitivities: introduction to IVARS

(inspired by) **Integrated Variogram Across a Range of Scales** Razavi and Gupta (2016a, b)

Estimate variogram from variances of all pairs of points separated by a distance h in the considered dimension

$$\gamma(h) = \frac{1}{2N(h)} \sum_{(i,j) \in N(h)} (y(x_i) - y(x_j))^2$$

Integrate the variogram to the desired sensitivity scale H

 $\Gamma(H) = \int_{0}^{H} \gamma(h) dh$

repeat for each factor

CB05 + 2 products

Sensitivity to the NOx factor similar across all scales

CB05 + 2 products

Sensitivity to the NOx factor similar across all scales

Sensitity to the a-pinene factor is stronger at larger scales

CB05 + 2 products

Sensitivity to the NOx factor similar across all scales

Sensitity to the a-pinene factor is stronger at larger scales

Sensitivity to POA factor is similar to sensitivity to a-pinene

CB05: switching the SOA parameterization

CB05: switching the SOA parameterization

CB05: increasing the complexity of the SOA parameterization

Preliminary conclusions

- Studies of emissions scenarios future effects rely on comparing the impacts of changes in factors (NO_x, POA, VOC) on targets (SOA)
- The selected SOA parametrization can strongly affect the model response to change at small and large scales
- The gas phase chemistry choice has a secondary impact on SOA sensitivity (this would be different for ozone!)
- This is only the beginning: need for more gas phase mechanisms and SOA parametrization representative of atmospheric community uses, investigation of more sensitivity factors and targets
- What is the SOA formation sensitivity of the real world?

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Thanks for your attention!

This research has been supported by:

VICEPRESIDENCIA **TERCERA DEL GOBIERNO** PARA LA TRANSICIÓN ECOLÓGIC

Plan de Recuperación, Transformación y Resiliencia

Funded by the European Union NextGenerationEU

camille.mouchel@bsc.es