CONSTRAINED CMIP6 FUTURE CLIMATE PROJECTIONS OVER THE EURO-MEDITERRANEAN REGION BASED ON A CIRCULATION PATTERNS APPROACH

MATÍAS OLMO

ÁNGEL MUÑOZ, DIEGO CAMPOS, PEP COS, ALBERT SORET, FRANCISCO DOBLAS-REYES

CLIMATE SERVICES TEAM – EARTH SCIENCES DEPARTMENT - BSC

15th International Meeting on Statistical Climatology

MOTIVATION

IPCC AR6 WGII, CCP4 Mediterranean Region.

OBJECTIVE

Design a process-based evaluation framework for CMIP6 GCMs based on atmospheric circulation patterns (CPs) for climate diagnosis and performance ranking to get improved understanding of future projections.

ECMWF ERA5 DAILY DATA (REFERENCE) 30 CMIP6 GCMS 1950-2014 + 2070-2100

Domains selected for the CPs.

Atmospheric circulation domains

- Mean sea level pressure (SLP)
- Geopotential Height (Z) at 500 hPa
- Zonal and meridional winds at 850 hPa

Surface variables (historical)

- Precipitation (PR)
- Maximum temperature (TX)
- Minimum temperature (TN)

Extreme indices (SSP585 vs. historical)

 ETCCDI indices, such as:TNn,TXx,TN90p,TX90p and RXIday.

METHODS AND WORKFLOW

Sensitivity to:

- -Domain size
- -Number of clusters
- -Input data

Anomalies estimation Correlation analysis

Cross-time scale evaluation of CPs variability

-ErrorCycle
-DISO
MODEL RANKING
AND
SUBSETTING

METHODS: EVALUATION METRICS

ErrorCycle

Percentage of difference in the daily frequency of each Summary of a Taylor Diagram. CP.

$$Error_{CP} = \frac{\sum\limits_{i=1}^{D} \left| fERA5_{CP}i - fGCM_{CP}i \right|}{D.fERA5_{CP}i}$$

Distance between Indices of Simulation and Observation (DISO)

$$r = \frac{\sum_{k=0}^{n} (a_i - \bar{a})(b_i - \bar{b})}{\sqrt{\sum_{k=0}^{n} (a_i - \bar{a})^2} \sqrt{\sum_{k=0}^{n} (b_i - \bar{b})^2}},$$

$$AE = \frac{1}{n} \sum_{k=0}^{n} (b_i - a_i),$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{k=0}^{n} (b_i - a_i)^2},$$

$$DISO = \sqrt{(r-1)^2 + NAE^2 + NRMSE^2}$$

DISO mean = weighted mean of PR,TN and TX DISO

Hu et al. 2018 Liu et al. 2018

Olmo et al. 2022 Agudelo et al. 2023

OBSERVATIONAL REFERENCE: CP CIRCULATION AND SURFACE PATTERNS

More difficulties in winter and transitional CPs (CPI, CP3, CP7).

PR spatial patterns are more challenging to reproduce, particularly in the transition seasons.

MODEL PERFORMANCE: ERRORCYCLE VS. DISO MEAN (PR,TN AND TX)

Best-performing GCMs often have similar delta changes. The ensemble preserves GCMs with high climate sensitivity.

DELTA CHANGES OF FUTURE EXTREMES: THE CASE OF CATALONIA (NE SPAIN) 2070-2100 SSP585

MAIN CONCLUSIONS

The classification of CPs can discriminate synoptic and surface structures with clear seasonal behaviour.

CMIP6 GCMs have different performances in terms of spatio-temporal variability.

This is a flexible framework for process-based model ranking and filtering of climate projections.

Larger delta changes are typically identified in the bestperforming GCMs.

THANKS!

MATIAS.OLMO@BSC.ES

EXTRA SLIDE I

EXTRA SLIDE II

