

Financiado por la Unión Europea NextGenerationEU

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Bringing the complexity of organic chemistry to climate models with machine learning techniques

<u>Camille Mouchel-Vallon</u>, Alma Hodzic, John Schreck, Charlie Becker, Keeley Lawrence, Siyuan Wang, Jinkyul Choi, Daven Henze, David John Gagne

PASC24, Zürich, 2024/06/05

Context

1st objective: A high resolution spatial (up to 2.5x2.5 km) and temporal (hourly) emissions system to compute emissions of primary atmospheric pollutants for Spain to be used in the national air quality prediction system.

Gaseous primary atmospheric pollutants NO_x, CO, SO_x, NH₃, **NMVOCs**

Non-Methane Volatile Organic Compounds are emitted by human and natural activities and their chemical evolution in the atmosphere has an impact on air quality, health and climate

Primary organic compounds: many sources, high diversity, high uncertainty

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Fuel extraction 100 % 90 % 80 % -70 % -60 % -30 % -20 % -10 % -0 % -E_EU R_EU E_CN R_CN E_US R_US

Distribution of emitted organic compounds families for two different inventories in Europe, China and USA

(Huang et al., 2017)

Primary organic compounds: many sources, high diversity, high uncertainty

Primary organic compounds: many sources, high diversity, high uncertainty

Atmospheric Evolution of Organics : formation of oxidized compounds

Plan de Recuperación,

Atmospheric Evolution of Organics : formation of oxidized compounds

Atmospheric Evolution of Organics : formation of oxidized compounds

Progressive and complex oxidation of organics

How I Learned to Stop Worrying and Love the Complexity

Barcelona Supercomputing Center Centro Nacional de Supercomputación Master Chemical Mechanism (Jenkin et al., 1997; 15yrs 2-3people ?)

- 143 precursors from C_1 to C_{12}
- 17000 reactions of 6700 species
- Simplified!

CLEPS (Mouchel-Vallon et al., 2017; 2yrs 2people)

- Cloud oxidation of C₁-C₄ products from isoprene oxidation
- 1315 reactions involving 717 chemical species
 Simplified!

Handwritten detailed mechanisms: high potential for errors and time consuming (creation and

maintenance)

How I Learned to Stop Worrying and Love the Complexity

Potential number of distinct species in a full oxidation mechanism as a function of the size of the precursor

Aumont et al. (2005)

Master Chemical Mechanism (Jenkin et al., 1997; 15yrs 2-3people ?)

- 143 precursors from C_1 to C_{12}
- 17000 reactions of 6700 species
- Simplified!

CLEPS (Mouchel-Vallon et al., 2017; 2yrs 2people)

- Cloud oxidation of C₁-C₄ products from isoprene oxidation
- 1315 reactions involving 717 chemical species
 Simplified!

Handwritten detailed mechanisms: high potential for errors and time consuming (creation and

maintenance) Financiado por la Unión Europe NextGenerationEU

We need to go faster

Writing the chemical mechanism

Solving the ODEs in a (3D) model

Plan de Recuperación, Transformación y Resiliencia

Automating boring things

Systematic and repeated oxidation steps

Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A, Aumont et al., 2005)

Accelerating things

Emulating atmospheric chemistry

Use GECKO-A 0D explicit simulations as training dataset

Emulate the behavior of the detailed model with machine learning

- Neural Networks (NN)
- Random Forest (RF)

VICEPRESIDENCIA TERCERA DEL GOBIERNO MINISTERIO Meteorología Recuperación, Transformación y Resiliencia

NN approach for predicting time-series of concentrations

1. Multi-layer perceptron MLP model

Schreck et al. JAMES 2022: Neural network emulation of the formation of OA based on the explicit GECKO-A chemistry model

NN approach for predicting time-series of concentrations

Schreck et al. JAMES 2022: Neural network emulation of the formation of OA based on the explicit GECKO-A chemistry model

Generate Neural Network training dataset with GECKO-A

- 3 precursors: toluene, dodecane, a-pinene
- Random environmental conditions
- No diurnal variations
- Initial precursor amounts of 10 ppt, 0.1 and 1 ppb

Temperature	240 - 320 K	Uniform
Solar zenith angle (SZA)	0-90 degrees	Uniform
Pre-existing aerosols	0.01 - $10\mu\mathrm{g/m^3}$	Logarithmic
Ozone	1 - 150 ppb	Uniform
NOx	$0.01{\text{-}}10 \text{ ppb}$	Logarithmic
ОН	10^1 – 10^6 molecules/cm ³	Uniform

Plan de Recuperación, Transformación y Resiliencia

Neural Network training dataset

Financiado por

la Unión Europea

extGenerationEU

Plan de Recuperación,

Multi-Layer Perceptron vs. Gated-Recurrent Unit network

30-ensemble member predictions for Toluene

\Rightarrow GRU performs better but is challenging to implement in a 3D model

Application in a box model for diurnally varying conditions

 \Rightarrow Neural Networks trained on datasets built under constant conditions cannot reproduce realistic diurnal cycles

 \Rightarrow Raises the question of the representativeness of the training data sets

Computational gain GECKO-A vs. GECKO-NN

For Toluene, GECKO-NN is 4×10² times faster than GECKO-A on CPU, and 10⁴ times faster on GPU

Model	Toluene		Dodecane		lpha-pinene	
GECKO-A	$0.9\mathrm{s}$	1	$71\mathrm{s}$	1	$220\mathrm{s}$	1
MLP CPU	$2.1\mu s$	430	$0.8\mu{ m s}$	8.88×10^4	$1.6\mu s$	1.38×10^5
MLP GPU	$0.08\mu s$	11250	$0.07\mu s$	1.01×10^6	$0.08\mu s$	2.75×10^6
GRU CPU	$3.1\mu{ m s}$	290	$3.2\mu s$	2.22×10^4	$3.3\mu s$	$6.67 imes 10^4$
GRU GPU	$0.38\mu s$	2368	$0.38\mu s$	1.87×10^{5}	$0.38\mu s$	5.79×10^5

Ratio of GECKO-A / GECKO-NN

Timing per 5min timestep

Plan de Recuperación.

Random Forest approach

Mouchel-Vallon & Hodzic, JGR, 2023:

Plan de Recuperación,

Random Forest: Realistic training dataset

Random Forest results: examples

Plan de Recuperación, Transformación y Resiliencia

Random Forest results: performance

Random Forest results: errors distribution

Little sensitivity of errors to the aerosol quantity to predict (seed, yield, mass) Errors sensitive to NOx regime and OH mixing ratios: underrepresented regimes in training set

Random Forest results: specializing random forests

Do performances improve if the range of chemical regimes to predict is reduced?

Random Forest results: predictors relative importance

Random Forest results: reducing the number of predictors

Do performances improve if the number of predictor is reduced?

First tests in a global model: VBS vs. GECKO-NN

Implementing GECKO-NN in Geos-Chem

GEOS-Chem Monthly average Toluene SOA (May 2016)

GECKO-NN-MLP

GECKO-NN simulations are

- stable over several months
- within a factor of 2 of the VBS _ parametrization for Toluene-SOA.

Conclusions and Outlook

- It is possible to emulate the behavior of detailed atmospheric chemistry models with machine learning
- Long term stability can be achieved for recurrent neural networks with GRU
- The training dataset must be carefully constructed to cover all environmental conditions
- Random forests can perform similarly to NN+GRU
- Predictors selection is crucial

Current and future works at BSC

- Bring the complexity of organic chemistry to air quality models, built on the development of detailed Spanish emissions
- Explore ML use, with lessons learned from this work: start again from the basics and systematic exploration by (i) progressively increasing chemical complexity (from toy mechanisms to GECKO-A complexity) and (ii) testing multiple families of ML techniques (RF, NN, GraphNet ...)
- Implementation in the MONARCH air quality model

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Thank you for your attention

camille.mouchel@bsc.es

Plan de Recuperación, Transformación y Resiliencia