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Context

1st objective: A high resolution spatial (up to 2.5x2.5 km)  and temporal 
(hourly) emissions system to compute emissions of primary atmospheric 

pollutants for Spain to be used in the national air quality prediction 
system.

Gaseous primary atmospheric pollutants
NOx, CO, SOx, NH3, NMVOCs

Non-Methane Volatile Organic Compounds are emitted by human and natural 
activities and their chemical evolution in the atmosphere has an impact on air quality, 

health and climate



Distribution of emitted organic compounds 
families for two different inventories in Europe, 

China and USA
(Huang et al., 2017)

Primary organic compounds: many sources, high diversity, high uncertainty
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(Hatch et al., 

2017)

Indonesian peat fire Chinese rice straw

Primary organic compounds: many sources, high diversity, high uncertainty



Primary organic compounds: many sources, high diversity, high uncertainty

Inventory of terpenoids emitted 
by plants
(Graedel, 1979)

isoprene
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Atmospheric Evolution of Organics : formation of oxidized compounds
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Progressive and complex oxidation of organics

Parent
Hydrocarbon

1st Generation
Species

2nd Generation
Species

CO2

How to bring this 
complexity to air 
quality models?
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How I Learned to Stop Worrying and Love the Complexity

Master Chemical Mechanism (Jenkin et al., 1997; 
15yrs 2-3people ?)

- 143 precursors from C1 to C12

- 17000 reactions of 6700 species
- Simplified!

CLEPS (Mouchel-Vallon et al., 2017; 2yrs 2people)

- Cloud oxidation of C1-C4 products from isoprene 
oxidation

- 1315 reactions involving 717 chemical species
- Simplified!

Handwritten detailed mechanisms: high potential for 
errors and time consuming (creation and 
maintenance)
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Aumont et al. (2005)
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We need to go faster

Writing the chemical mechanism Solving the ODEs in a (3D) model



Automating boring things

Systematic and repeated 
oxidation steps

Generator for Explicit 
Chemistry and Kinetics of 
Organics in the Atmosphere
(GECKO-A, Aumont et al., 
2005)



Aumont et al., 2005

Automating boring things



Accelerating things

Writing the chemical mechanism Solving the ODEs in a (3D) model

GECKO-A

Machine learning?

12 biogenic, 53 anthropogenic precursors

23 million reactions involving 4.4 million species

(Mouchel-Vallon et al., 2020)

Simulating 2 days in 2 grid cells

≈ 36 hours on 16 cores



Emulating atmospheric chemistry

Use GECKO-A 0D 
explicit simulations as 
training dataset

Emulate the behavior 
of the detailed model 
with machine learning

Computationally 

expensive

• Neural Networks (NN)
• Random Forest (RF)



NN approach for predicting time-series of concentrations 

Schreck et al. JAMES 2022: Neural network emulation of the formation of OA based on the explicit GECKO-A chemistry model
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Generate Neural Network training dataset with GECKO-A

• 2,000 random experiments for each precursor
• 5 days / 5 minutes output
• 2.9 × 106 samples (80% training, 20% validation)

• 3 precursors: toluene, dodecane, a-pinene
• Random environmental conditions
• No diurnal variations
• Initial precursor amounts of 10 ppt, 0.1 and 1 ppb

Schreck et al., JAMES, 2022



Neural Network training dataset

Effect of T on 
condensation
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rg
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ts

Predictors

OH ↑
Precursor ↓
Organic gas ↓
Organic aerosol ↑

Schreck et al., JAMES, 2022



Multi-Layer Perceptron vs. Gated-Recurrent Unit network
30-ensemble member predictions for Toluene

GECKO-A true
NN mean, 30 members

GECKO-A 
true
NN mean, 
30 
members

Multi-layer perceptron

⇒GRU performs better but is challenging to implement in a 3D model

Gated-recurrent unit

GECKO-A true
NN mean, 30 members

Precursor exponential 

decay well captured

Schreck et al., JAMES, 2022



Application in a box model for diurnally varying conditions

GECKO-A vs. GECKO-MLP
⇒Neural Networks trained on 

datasets built under constant 

conditions cannot reproduce 

realistic diurnal cycles

⇒Raises the question of the 

representativeness of the training 

data sets



Computational gain GECKO-A vs. GECKO-NN
• For Toluene, GECKO-NN is 4×102 times faster than GECKO-A on CPU, and 104 times faster on GPU

Ratio of GECKO-A / GECKO-NN
Timing per 
5min timestep



Random Forest approach

P(ti) G(ti) A(ti) E(ti)

G(ti+1) A(ti+1)

Tree 1

Prediction 1

Tree 2

Prediction 2

Tree N

Prediction N

…

Averaging predictions

Inputs :
• Precursor concentration
• Gas organic concentration
• Aerosol organic concentration
• Temperature
• Solar zenith angle
• Pre-existing aerosol
• O3

• NOx
• OH

Output :
• Gas organic concentration
• Aerosol organic concentration

Mouchel‐Vallon & Hodzic, JGR, 2023: 
Toward emulating an explicit organic chemistry mechanism with random forest models.

E(ti)

A(ti)

G(ti)

P(ti)

G(ti+1)

A(ti+1)



Random Forest: Realistic training dataset

• 2 precursors: toluene, dodecane
• Random environmental conditions
• With diurnal variations
• Random initial precursor concentration

From 3D model 
tropospheric ranges

0              60           120           240

Only 2 targets

10 days / 5 min output
1×106 samples/precursor



Random Forest results: examples

RF perform similarly to NN
The training set allows 
reproducing the diurnal cycles

organic 

gases

organic 

aerosol

GECKO-A

Random Forest

time /day



Random Forest results: performance

Increasing the number of 
training samples improves 
performance

error 
accumulation

diminishing returns of 
increasing the size of 
the training sample



Random Forest results: errors distribution

increasing error

Little sensitivity of errors to the aerosol quantity to predict (seed, yield, mass)

Errors sensitive to NOx regime and OH mixing ratios: underrepresented regimes in 

training set

RO2 + NO

RO2 + HO2



Random Forest results: specializing random forests
Do performances improve if the range of chemical regimes to predict is reduced?

Specialization requires more 

or better constructed

training data

toluene dodecane

1×105 7×104

6×105 3×105

4×105 7×105

# training points



Random Forest results: predictors relative importance

The importance of predictors (mean decrease 

impurity) is similar for both species

Distribution of importance and predictive ability 

among correlated variables



Random Forest results: reducing the number of predictors

Do performances improve if the number of predictor is reduced?

Reducing the number of (correlated?) predictors is 

beneficial for the worst performing simulations

Importance of selecting predictors and

dimensionality reduction



First tests in a global model: VBS vs. GECKO-NN 

GEOS-Chem Monthly average Toluene SOA (May 2016)

VBS Hodzic et al., 2016

GECKO-NN-MLP

ug/m3

ug/m3

GECKO-NN simulations are 

- stable over several months

- within a factor of 2 of the VBS   
parametrization for Toluene-SOA.

Implementing GECKO-NN in Geos-Chem



Conclusions and Outlook

• It is possible to emulate the behavior of detailed atmospheric chemistry models with machine learning
• Long term stability can be achieved for recurrent neural networks with GRU
• The training dataset must be carefully constructed to cover all environmental conditions
• Random forests can perform similarly to NN+GRU
• Predictors selection is crucial

Current and future works at BSC
• Bring the complexity of organic chemistry to air quality models, built on the development of detailed Spanish 

emissions 
• Explore ML use, with lessons learned from this work: start again from the basics and systematic exploration 

by (i) progressively increasing chemical complexity (from toy mechanisms to GECKO-A complexity) and (ii) 
testing multiple families of ML techniques (RF, NN, GraphNet …)

• Implementation in the MONARCH air quality model



Thank you for 
your attention

camille.mouchel@bsc.es
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