

Ensemble of sea ice initial conditions for interannual EC-Earth climate predictions: Improved forecast quality over the Arctic

Virginie Guemas

In collaboration with Francisco J. Doblas-Reyes, Kristian Mogensen, Sarah Keeley and Yongming Tang

I - Context

Sea ice predictability

- Sea ice area persistence 2-5 months
- ➤ Re-emergence up the 15 months (Blanchard-Wrigglesworth et al, 2011): autumn-to-spring (memory in the thickness), spring-to-autumn (memory in the SST)
- > Spring Arctic sea ice thickness precursor of end-of-summer sea ice extent (Chevallier and Salas-Melia, 2012)

Potential for skilful interannual sea ice predictions if sea ice volume properly initialized

I - Context

improvement of European Climate Services

MINISTERIO ISSUE for initialization: sparse observational coverage Seasonal-to-decadal climate Prediction for the

Before 1973:

Arctic: monthly sea ice extent estimates

Antarctic: climatologies 1929-1937 & 1947-1962

- From 1973 : quasi weekly estimates of sea ice concentration, US Navy, Canadian, Danish aerial reconnaissance
- From 1978 : 2-day frequency later daily, gridded, 1°, satellite microwave imagery
- First sea ice thickness dataset in 2010 : submarine, ULS

Need for consistent sea ice reconstruction over 1960-present

II - Methodology

Sea ice reconstruction

- ➤ <u>NEMO3.2</u> ocean model + <u>LIM2</u> sea ice model
- Forcings: 1958-2006 DFS4.3 or 1979-2013 ERA-interim
- ➤ <u>Nudging</u>: T and S toward ORAS4, timescales = 360 days below 800m, and 10 days above except in the mixed layer, except at the equator (1°S-1°N), SST & SSS restoring (-40W/m2, -150 mm/day/psu)
- ➤ Wind perturbations + 5-member ORAS4 ---> 5 members
 for sea ice reconstruction

5 member sea ice reconstruction for 1958-present consistent with ocean and atmosphere states used for initialization

III - Validation

October-November Arctic sea thickness

Too much ice in central Arctic, too few in the Chukchi and East Siberian Seas

III - Validation

March and September Arctic sea ice

Bias but reasonable agreement in terms of interannual variability

III - Validation

Atlantic Meridional Overturning Circulation

Overturning Streamfunction 40-55N, 1-2km

Ocean nudging allows capturing decadal variability in AMOC and warm inflow in the Barents Sea

IV - Forecasts

Climate predictions initialized from those sea ice conditions

- ➤ Initialization every 2 years from 1960 to 2004 + 1965 + 1975
- + 1985 + 1995 + 2005 on 1 November = 28 forecasts
- ➤ Ocean from ORAS4, Atmosphere from ERA40/ERAInt, Sea ice from our 5-member reconstruction, full-field initialization
- > 3-year forecasts performed with EC-Earth 2.3
- ➤ Sensitivity experiment with New Sea Ice initial conditions = NSI is compared to previous CMIP5 contribution = CTL initialized from a NEMO2-LIM2 simulation forced by DFS4.3

Assessment of the benefits of using our new sea ice initial conditions by comparing NSI to CTL

V - Forecast skill

Improved forecast skill in the Arctic

Correlation Arctic sea ice area

Reference: HadISST

Correlation 2m temperature (60-90°N)

Reference: NCEP (continuous) ERA40 (dots)

Although not significant, larger correlation in the Arctic region

V - Forecast skill

Improvement confined to the Arctic

2m temperature

Reference: ERSST over seas + GHCN over land except poleward of 60° GISSTEMP

Nothing significant but improvement all over the Arctic

VI - Spread

Interquartile Range of the ensemble members around the ensemble-mean

Arctic Sea Ice Area

Antarctic Sea Ice Area

Larger spread between members for sea ice variables

VI - Spread

Ratio SD (members) / RMSE (ensemble-mean)

Arctic Sea Ice Area

Spread between the ensemble members closer to RMSE of the ensemble-mean

Conclusions

5-member Sea Ice Reconstruction:

- Sea ice state consistent with ocean and atmosphere states
- Too much sea ice in the central Arctic, too few in the Chukchi and East Siberian Seas
- Reasonable agreement of the Arctic sea ice interannual variability with observational datasets

Climate predictions initialized from this 5-member reconstruction:

- Although the differences are not significant, the correlation is increased for Arctic sea ice area and 2m temperature
- The increase in correlation for 2m temperature is confined to the Arctic
- The spread between members is larger for sea ice variables, thus more representative of the forecast error

Thank you very much for your attention

virginie.guemas@ic3.cat

This work was supported by the EU- funded SPECS project, under grant agreement 308378, and by the MINECO-funded PICA-ICE projects under grant agreement CGL2012-31987