
Provenance Integration in R seasonal-to-decadal verification workflow

Albert Puiggròs

aUniversitat Politècnica de Catalunya - ETSETB, CPIA, c/ Jordi Girona, 31, Les Corts, Barcelona, 08034, Spain,

Abstract

In the field of climate research, the integrity and reproducibility of data are paramount. Ensuring reliable outcomes is crucial to
effectively manage data provenance. This report focuses on the proper integration of SUNSET (SUbseasoNal to decadal climate
forecast post-processing and asSEmenT suite) and METACLIP (METAdata for CLImate Products), aiming to establish a complete
system for tracking and managing data provenance in climate product verification. By implementing so, we seek to enhance
useful provenance in generated climate products by providing a clear and traceable history of data sources, transformations, and
final products. This integration is expected to extent comprehensively over the entire climate verification workflow, making it
suitable for accurately extracting of all data provenance defined by METACLIP. The first block of the project reflects the process
of familiarization and understanding of the working environment and methodology, as well as of the new software encountered
and provenance data definition and implementation. Then, the second block delves into the details of the implementation and
provenance extraction.

Keywords:

1. Introduction

Provenance, as defined on the Provenance Working Group
definition in 2013, is a “record which specifies the people,
institutions, entities, and activities involved in the creation
and influence exercised on data”. Such a record turns out
to be crucial, primarily to ensure reproducibility of obtained
results. The proper tracking of a data’s course significantly
increases the value of both the final product and original data
by making the influence of one the other clear and traceable.
Consequently, a recognized metadata scheme is vital when
intending to extract provenance from data product generation.
Also, official standard and vocabularies play a key role in
properly describing the comprehensive metadata and schemes
representing the lifecycle of data.

In a timed marked by rapid development of data and cli-
mate services, there exists a growing need among users and
producers of an overarching complete provenance description
of generated climate products. Several transnational initiatives
have already been developed aiming to establish international
standard for data provenance. Specific to the climate scene,
some initiatives such the Climate and Forecast Metadata
Convention (CF) have adopted international standards for
metadata encoding. These types of conventions intend to de-
scribe physical meaning of data as well as spatial and temporal
properties. The complexity of climate data processing requires
a specialized and officially approved provenance framework
that can adequately match the data used and generated with a
recognized ontology.

To ensure the integrity and reliability of data provenance in

climate research, this project relies on METACLIP (METAdata
for CLImate Products) as a solution for identifying, extracting,
linking, and assembling the information needed to fully
characterize a climate product. It is based on RDF and focused
on semantic description of climate products of all types, so
that each of them and it’s provenance is inseparable and jointly
delivered. These report analyses the possibility of a suitable
integration of METACLIP into the SUNSET (SUbseasoNal to
decadal climate forecast post-processing and asSEmenT suite)
workflow, enhancing provenance tracking. SUNSET is an
advanced R-based modular tool developed by the BSC Earth
Science department designed for comprehensive forecast veri-
fication. It handles NetCDF files from several data sources and
aims to simplify the processing, evaluation and interpretation
of climate data. Its integration with METACLIP tries to embed
detailed provenance information from its workflow and data
sources, enhancing transparency and traceability of the climate
forecasts produced. The following sections of the report delve
deeper into the main components and functionalities of each
system, as well as into the first approach regarding the desired
implementation of the integration.

2. METACLIP

2.1. RDF-based approach for provenance description
METACLIP, standing for METAdata for CLImate Products,

is a provenance framework based on semantics exploiting the
web standards RDF (Resource Description Framework). It’s
a framework designed to track and manage data provenance
specifically of climate products. Exploiting the Resource
Description Framework (RDF) METACLIP provides a

Preprint submitted to Albert Puiggròs March 5, 2024

Figure 1: METACLIP vocabulary. Definition of classes and entities related to transformations undertaken by data.

language-independent solution.

RDF, developed by the World Wide Web Consortium
(W3C), is a standard model originally created for metadata
description that has since become a general method for de-
scribing and exchanging data. It allows the representation of
information in a simple graph form, which consists of triple
statements: subject, predicate, and object. Each part of the
triple is uniquely identifiable by a Uniform Resource Identifier
(URI), a string of characters used to recognize resources on the
internet. It enables for a clear, unambiguous identification or
resources in the RDF graph, easing the linking and integration
of data from distinct sources. URI are the standard way to
name and reference objects within RDF and broader semantic
web frameworks.

Due to its versatility, RDF has been widely adopted across
many fields, from geospatial features to music products. This
high adaptability is achieved using ontologies, written in RDF
by means of the Web Ontology Language (OWL). An ontology
creates a simple model of a particular area of knowledge,
listing types of objects, how they relate to each other and rules
about them. As a result, the fact that RDF can handle many
different types of vocabularies and models makes it particularly
suitable for METACLIP, enabling it to give deep detail of
climate products and their backgrounds. In the following
Section more detail of the METACLIP vocabulary is given.

Essentially, RDF’s is well suited for an easier and more effi-

cient use of the semantic web. It’s flexible, supporting a wide
variety of syntaxes and data organization methods. Among
these, Turtle is particularly popular due to its readability and
simplicity. In addition, other common syntaxes such as Json
provide alternative ways to encode and access RDF data, of-
fering different choices depending on distinct needs and prefer-
ences. The use of RDF by METACLIP ensures that every piece
of generated climate data, whether it’s climatological data, in-
dices, plots, or other kind of digital data, is inseparably linked
with its provenance information. Then, users that have access
to it can always trace the data back to its origins.

2.2. Metaclip vocabularies

The METACLIP framework implements specialized ontol-
ogy to organize and manage provenance of climate data prod-
ucts. In this particular context, an ontology refers to a set of
vocabularies and specific definitions regarding climate opera-
tions and data to represent the climate domain comprehensively.
These vocabularies are collections of terms, definitions, and
concepts, either abstract or physical-related, that are unequiv-
ocally interconnected. They attempt to illustrate not only data
but also the processes undertaken and relationships directly as-
sociated with climate data production and processing.

It implements four core vocabularies, which are an extension
of the well-known PROV-O ontology:

• Datasource (ds:) The datasource vocabulary details the
source of the input data. It includes dataset descriptions
and transformations. Also, it establishes the proper links

2

Figure 2: Schematic representation of a typical climate product generation workflow. METACLIP specifically considers the different intermediate steps and
establishes a particular ontology for each of them.

Figure 3: METACLIP-generated simple provenance graph.

between different classes and arguments at each step. Its
URI is http://metaclip.org/datasource.owl.

• Calibration (cal:) Calibration encodes metadata related
to bias correction, downscaling, and other statistical op-
erations. It focuses on validating and developing sta-
tistical downscaling functionalities. Its URI is http:

//metaclip.org/calibration.owl.

• Verification (ver:) Aims to encode metadata for veri-
fying seasonal forecast products. Moreover, it also in-
cludes a conceptual framework to implement other cli-
mate validation operations and forms. Its URI is http:

//metaclip.org/verification.owl.

• Graphical Output (go:) The graphical output ontology
describes graphical products such as charts and maps.
Characterizes the uncertainty types and their communi-
cation. Its URI is http://metaclip.org/graphical_
output.owl.

METACLIP represents a significant extension of the PROV-
O ontology which serves as its fundamental starting point pro-

3

http://metaclip.org/datasource.owl
http://metaclip.org/calibration.owl
http://metaclip.org/calibration.owl
http://metaclip.org/verification.owl
http://metaclip.org/verification.owl
http://metaclip.org/graphical_output.owl
http://metaclip.org/graphical_output.owl

Figure 4: Schematic example showing the re-use of the PROV-O ontology by the METACLIP’s datasource ontology.

viding key terms and concepts. The primordial terms from
PROV-O are Entities, Activities and Agents. It’s proper un-
derstating is highly important to achieve a correct definition of
METACLIP terms. The “prov:Entity” class defines any physi-
cal, digital or conceptual objects -either real or imaginary-. The
“prov. Activity” class describes something that occurs over a
particular period of time and acts on entities. It includes data
transformations, processing, relocation or modifying. Lastly,
the “prov:Agent” class defines what has some form of respon-
sibility for an activity taking place, either for the existence of an
entity or for an activity being conducted. To accurately under-
stand the METACLIP vocabularies and the way they establish
an extension of the PROV-O data model, a brief explanation re-
garding Figure 4 is next given. In METACLIP, the first setp in
provenance extraction involves defining the input data by means
of the datasource(ds:) vocabulary. It is defined with the entity
“ds:Dataset” (ds:Dataset) which can be identifies as an exten-
sion of the “prov:Entity”. It’s subdivided in other six subclasses
based on the data nature. For example, “ds:ModellingCenter”
and “ds:DataProvider”, both subclasses of “prov:Agent” de-
fine, though in a different scope, the data’s origin. Several
other specific details unique to each “ds:Dataset” are recorded.
When generally implemented, METACLIP can also encode the
data’s various transformations by means of the “ds:Step” class
or even the construction of multi-model ensembles using the
“ds:Ensemble” class. Many more operations can be described
due to the large extension and specificity of the classes and re-
lations.

2.3. metaclipR: Climate4R extension
The METACLIP framework is implemented through the pro-

gramming environment R in the package metaclipR. The pri-

mary function of metaclipR is to track and extract the prove-
nance data from various operations during data workflows and
convert that information into RDF, based on the METACLIP
ontology. Even though metaclipR is capable of handling dif-
ferent types of data, it is particularly customized for the cli-
mate4R framework, a tool designed for processing climate data
within the R environment. It’s structured approach offers the
handling of various types of data: observations, seasonal fore-
casts, graphical representations, etc. It is subdivides in four
core packages: loadR, transformR, visualizeR and downscaleR.
The specialization of metaclipR on climate4R allows to effi-
ciently deal with all the packages and their execution. Thus,
it is built to specifically extract provenance information from
the way climate4R handles and analyses climate data. Further-
more, metaclipR includes functions from climate4R packages.
Then, in order to properly run metaclipR functionalities all the
packages prior mentioned have to be installed. In summary,
metaclipR generates metadata by mapping function calls or in-
put arguments onto the METACLIP ontology, creating an RDF
graph representation of the provenance data. The graph is con-
tructed using the igraph package. A preliminary overview of
the metaclipR functions lead to an output shown in Figure 5
where some simple dataset provenance is stored from an estab-
lished data source.

3. SUNSET

3.1. SUNSET: Workflow

The SUNSET framework offers a modular processing of
climate data products combining user-defined recipes, climate

4

Figure 5: Schematic example showing a possible provenance implementation in the Sunset workflow -without considering METACLIP ontology-.

R Package GitHub Reposi-
tory URL

devtools https:

//devtools.

r-lib.org/

transformR https:

//github.com/

SantanderMetGroup/

climate4R.git

visualizeR https:

//github.com/

SantanderMetGroup/

visualizeR.git

loadeR https:

//github.com/

SantanderMetGroup/

loadeR.git

metaclipR https:

//github.

com/metaclip/

metaclipR.git

climate4R https:

//github.com/

SantanderMetGroup/

climate4R.git

Table 1: List of R packages and their GitHub repositories

data and scripts. The Recipe template for the workflow deter-
mining how the execution will take place and which operations
will the modules within sunset apply. It specifies datasets,
forecast horizon time period and skill metrics to compute and
many other parameters.

Once the recipe is loaded, the data from the recipe -that
also contains the directory of the climate data- is encapsu-
lated within a s2dvcube object which contains observational,
hindcast and forecast raw data. It’s execution is distributed
among several modules. The Loading Module starts the pro-
cess by extracting and processing the data, interpolating it into
s2dvcube. This first step is followed by the Calibration Mod-
ule and Anomalies Module, which apply a bias correction and
where anomalies are computed. Other existing modules spe-
cific to other climate processing actions are the Downscaling
Module, the Indices Module, the Skill and Probabilities Mod-
ules, the Scorecard Module and the Saving module, all of them
executing a particular transformation according to how is out-
lined in the Recipe. The outputs from the workflow are orga-
nized and saved in the designated folder, previously defined in
the Recipe, in a NetCDF file. Remark the fact that NetCDF
(Network Common Data Form) files are widely used in climate
data processing for storing and distributing climate and fore-
cast data and are particularly suited for handling large, multi-
dimensional datasets.

5

https://devtools.r-lib.org/
https://devtools.r-lib.org/
https://devtools.r-lib.org/
https://github.com/SantanderMetGroup/climate4R.git
https://github.com/SantanderMetGroup/climate4R.git
https://github.com/SantanderMetGroup/climate4R.git
https://github.com/SantanderMetGroup/climate4R.git
https://github.com/SantanderMetGroup/visualizeR.git
https://github.com/SantanderMetGroup/visualizeR.git
https://github.com/SantanderMetGroup/visualizeR.git
https://github.com/SantanderMetGroup/visualizeR.git
https://github.com/SantanderMetGroup/loadeR.git
https://github.com/SantanderMetGroup/loadeR.git
https://github.com/SantanderMetGroup/loadeR.git
https://github.com/SantanderMetGroup/loadeR.git
https://github.com/metaclip/metaclipR.git
https://github.com/metaclip/metaclipR.git
https://github.com/metaclip/metaclipR.git
https://github.com/metaclip/metaclipR.git
https://github.com/SantanderMetGroup/climate4R.git
https://github.com/SantanderMetGroup/climate4R.git
https://github.com/SantanderMetGroup/climate4R.git
https://github.com/SantanderMetGroup/climate4R.git

3.2. SUNSET: Environment, Gitlab and Conda
To facilitate a comprehensive analysis of the SUNSET

project, we utilized GitLab, a web-based DevOps lifecycle
that provides a platform for software development and collab-
oration. The Sunset repository in GitLab integrates several
stages of the development process, the source code, numerous
example scripts and execution instructions. This approach
not only allowed to access all relevant information of the
sunset workflow and develop the code but also enabled us to
collaborate more effectively, ensuring a detailed evaluation
of the project’s advancement. In this sense, it includes issue
tracking systems, code review tools and merge requests,
which promotes constant team interaction and collaboration.
Moreover, it also allows multiple developers to work on a
same project without altering the main code and file branch as
changes can be merged seamlessly.

Although the sunset GitLab repository was used to under-
stand the workflow and develop a first code implementation, it
became necessary to establish a local environment to run and
test it effectively. Among several options, we opted to install a
Conda environment. Conda is an open-source package manage-
ment system that allows the creation of isolated environments
such the one of Sunset. This enabled us to mirror the project’s
repository functionalities into a local environment; then, to pre-
vent conflicts with specific software requirements. Further de-
tails of its installation are given in the following section.

4. Provenance integration

4.1. First approach: Familiarization and identification
The initial phase of the research involved the analysis and

comprehension of the METACLIP vocabularies and their
implementation. For this purpose, we utilized Protégé, a free,
open-source ontology editor developed by the Stanford Center
for Biomedical Informatics Research. Protégé serves as a
platform for constructing and manipulating ontology models.
Its application was key to understand METACLIP’s classifica-
tion of each class and relation, and how the interconnections
between classes are stablished. Protégé is designed to work
with several formats, including .owl files. OWL stands for Web
ontology Language. It is a semantic markup language used to
publish and share data using specific ontologies and contains
all definitions of classes, properties, individuals and data
values, according to the constraints stablished by a particular
ontology.

Listing 1: RDF file outcome
1 @prefix rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#> .

2 @prefix ds: <http :// metaclip.predictia.es/datasource/datasource.owl > .

3 @prefix prov: <http ://www.w3.org/ns/prov > .

4
5 ds:Dimension

6 ds:hasDimensions "Latitude", "Longitud" ;

7 a ds:Entity .

8
9 ds:ERA5

10 ds:SubClassOf "Dimension" ;

11 ds:hadDataProvider "Meteo -France -System7" ;

12 ds:hadModellingCenter "Meteo -France -System7" ;

13 a ds:Dataset .

14
15 ds:Meteo -France -System7

16 a ds:ModellingCenter .

Similarly, the research also involved the meticulous compre-
hension of the sunset workflow, as well as of the new environ-
ments it is established on. Alongside it, we took a first approach
of provenance extraction from sunset, thus identifying possible
integration points and defining individual pieces information to
be propagated. Without considering the METACLIP vocabular-
ies at first, we created a provenance scheme, as shown in Figure
5. In it we can identify all steps regarding the transformations
the data has undertaken, as well as several provenance infor-
mation that directly identify the dataset. All research done is
reflected on the first sections of this report.

4.2. RDF generation using R locally

Due to the complexity and extensive nature of the sunset
workflow and the METACLIP ontologies, our initial goal was
to extract provenance information from the Recipe, which, in
fact, contains a substantial portion of it, by means of the estab-
lished METACLIP ontologies. Some difficulties with the local
execution of the METACLIP R packages led us to develop a
function that implements from scratch some defined ontology
definitions to elements extracted and translated from the recipe.
Two specific packages were required to use: “yml”, for the effi-
cient handling of YML data such the recipe, and “redland”, for
a solid RDF graph management within R. By combining the
functionalities of these two packages, we were able to create a
function that integrated minor provenance data from the recipe.
The outcome data was saved in RDF format and serialized into
turtle format(.ttl). The outcome is shown in Listing 1.
Even though the provenance extraction is brief and simple, the
results obtained have proven to be insightful and valuable. The
RDF data captured provides a structured representation of a
simple provenance model of a particular dataset established in
the Recipe. Remark the fact that this particular model could
be largely extended by including the definition of more classes
and relations from the METACLIP ontology. No further devel-
opment is intended to be made on this code as I does not achieve
the desired implementation into the sunset workflow. Also,
it presents some minor errors when defining several classes.
However, it’s simply been created for research purposes and al-
lowed us to gain a deeper comprehension on the structure of this
type of provenance data. Finally, the results can be graphically
visualized by means of a proper RDF interpreter. In this partic-
ular case, we have used an online interpreter with URLhttps:
//www.ldf.fi/service/rdf-grapher. The obtained graph
is Shown in Figure 5. Remark the fact that many other libraries
related to the provenance project were also analysed and tested,
such as rdflib or jsonld.

4.3. METACLIP integration in Sunset: environment setting

As previously stated, the aim of establishing a conda
environment is to create an isolated workspace where specific
software packages can be managed. In the first place, we had to
install WSL (Windows Subsystem for Linux), a compatibility
layer in Windows that allows Linux distribution to run. That
enabled us to use a full-based Linux environment within our
Windows operating system. Once the installation is complete

6

https://www.ldf.fi/service/rdf-grapher
https://www.ldf.fi/service/rdf-grapher

Figure 6: RDF graph

R Package CRAN Reposi-
tory URL

redland https:

//github.

com/ropensci/

redland-bindings/

tree/master/R/

redland

yml https:

//github.

com/vubiostat/

r-yaml/

jsonld https://docs.

ropensci.org/

jsonld

rdflib https:

//github.

com/ropensci/

rdflib

Table 2: List of R packages and their GitHub repositories

we can implement it by typing in the terminal wsl. This simple
command initiates the Linux environment and grants access to
its utilities.
Before setting up the sunset conda environment in our WSL
workspace, we have to install either Miniconda (https:
//docs.conda.io/en/latest/miniconda.html)) or
Anaconda (https://www.anaconda.com/products/
individual). After the installation, we use the following
command to create the environment:

> conda env create --file

environment-sunset.yml --prefix

User/conda-sunset/

or we can also use:

> mamba env create --file

environment-sunset.yml --prefix

User/conda-sunset/

This command uses either ”mamba” or ”conda” package
manager to create a conda environment based on the spec-
ifications defined in an the environment configuration file
environment-sunset.yml, which can be downloaded from
the Sunset GitLab repository. Afterwards, we only need to
activate the environment and the workspace setting will be
completed:

> conda activate /home/albertpuiggros/User/

conda-sunset

Once the environment is properly set, we proceed to copy the
sunset branch repository we have been working on in GitLab
and install all the R packages via the R console to ensure a
proper functioning of the code we desire to implement. First,
we make a copy of the sunset branch:

7

https://github.com/ropensci/redland-bindings/tree/master/R/redland
https://github.com/ropensci/redland-bindings/tree/master/R/redland
https://github.com/ropensci/redland-bindings/tree/master/R/redland
https://github.com/ropensci/redland-bindings/tree/master/R/redland
https://github.com/ropensci/redland-bindings/tree/master/R/redland
https://github.com/ropensci/redland-bindings/tree/master/R/redland
https://github.com/vubiostat/r-yaml/
https://github.com/vubiostat/r-yaml/
https://github.com/vubiostat/r-yaml/
https://github.com/vubiostat/r-yaml/
https://docs.ropensci.org/jsonld
https://docs.ropensci.org/jsonld
https://docs.ropensci.org/jsonld
https://github.com/ropensci/rdflib
https://github.com/ropensci/rdflib
https://github.com/ropensci/rdflib
https://github.com/ropensci/rdflib
https://docs.conda.io/en/latest/miniconda.html)
https://docs.conda.io/en/latest/miniconda.html)
https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual

Figure 7: Final output

8

> git <https://earth.bsc.es/gitlab/es/

sunset/dev-test-provenance.git>

Then we open an R session and install all the missing R
packages that were mentioned in previous Sections through its
console:

> install.packages("CSTools")

> install.packages("docopt")

> install.packages("devtools")

> install.packages("BiocManager")

> BiocManager::install("Rgraphviz")

> devtools::install-github("SantanderMetGroup/

transformeR")

> devtools::install-github("metaclip/metaclipR")

> devtools::install-github("SantanderMetGroup/

startR")

> devtools::install-github("SantanderMetGroup/

loadeR")

> devtools::install-github("SantanderMetGroup/

visualizeR")

After all the packages are installed, the environment is ready to
run the sunset workflow locally. Even if we could manage to
execute the workflow with some sample data, further test are
required to achieve more certainty about its correct execution.

4.4. METACLIP integration in Sunset: Developed code

This section aims to entirely describe the implemented
script. After a long familiarization process with the META-
CLIP and Sunset R functions and their use, we cooperatively
created a simple code that aims to merge in a same execution
both their functionalities. The created code is organized into
several sections which simultaneously include METACLIP and
Sunset functions, thus illustrating how they can be merged.
In the first place, the scrpit begins by sourcing several Sunset
modules such ”Loading”, ”Calibration”, ”Skill”, ”Saving” and
”Visualization” from the copied repository branch. It then
loads the metaclipR library which implements all METACLIP
functions. Then each line calls an R script from their specific
path and load’s it into the environment.

> source("modules/Loading/Loading.R"))

> source("modules/Calibration/Calibration.R")

> source("modules/Skill/Skill.R")

> source("modules/Saving/Saving.R")

> source("modules/Visualization/Visualization.R")

> library(metaclipR)

Then, the recipe is specified from its path. It is
loaded and properly established in R by means of the
prepare-outputs() function from Sunset.

> recipe-file <- recipes/atomic-recipes/

recipe-seasonal-provenance.yml

> recipe <- prepare-outputs(recipe-file)

The first provenance implementation occurs after Sunset’s
Loading module is executed. This module retrieves the
requested data and interpolates it into a desired grid based
on the recipe’s execution instructions. Afterwards, by means
of the metaclipR.Dataset() function a metadata object is
created detailing its source, type and several other possible
characteristics.

> data <- Loading(recipe)

> metadata.seas5 <- metaclipR.Dataset(

Dataset.name = "SUNSET Sample Seasonal Dataset",

DataProvider = "ECMWF", DataProvider.URL = url,

Dataset.subclass = "SeasonalHindcast", Project

= "SEAS5", ModellingCenter = "ECMWF")

A similar procedure takes place when the Calibration
module is executed. The data is calibrated using the Sunset
function Calibration() with the method established in the
recipe. Subsequently, provenance metadata is added to the
prior metadata recorded by means of the METACLIP function
metaclipR.BiasCorrection, which includes information
about the method used for the bias correction, the arguments
passed and the references for graphs and datasets.

> calibrated-data <- Calibration(recipe, data)

> metadata-calibrated <-

metaclipR.BiasCorrection(

package="modules/Calibration/Calibration.R",

"1.0", BC.method = "bias", fun = "Calibration",

arg.list = list(recipe data), TrainingGraph =

metadata.seas5, ReferenceGraph = metadata.seas5,

graph = metadata.seas5)

Afterwards, skill metrics and probabilities, from Sunset’s
Skill module, are computed depending on the specific recipe
instructions. Both functions execute taking as input the recipe
and the calibrated data. However, no provenance data is
extracted from this part of the script.

> skill-metrics <- Skill(recipe,

calibrated-data)

> probabilities <- Probabilities(recipe,

calibrated-data)

Finally, the open graphics devices are closed by means of
dev.of(). Then, the graph representing the entire defined
provenance regarding dataset and calibration is plotted and
saved as a JSON file.

> dev.off()

> plot(metadata-calibrated/graph)

> graph2json(metadata-calibrated/graph,

"/tmp/graph.json")

The entire script is showed in Listing 4 in the Annexes. Over-
all, the code executes part of the sunset workflow for a sample

9

data and simultaneously extracts dataset and calibration meta-
data by means of the functions of the metaclipR package.

4.5. METACLIP integration in Sunset: Final execution

Once all the installation is over, the environment set up and
the code constructed, we proceed to execute the provenance
integration code. To do so, we type the following command in
the environment terminal:

> Rscript ./example-scripts/test-decadal-

provenance.R

Upon successful execution of the command, the script pro-
cesses data as stated before and generates two outputs: a JSON
graph and a visual plot that represent the data’s provenance
and relationships. The JSON file is shown in Listing 5 in the
Annexes and the visual plot in Figure 7. The JSON com-
prehensively encapsulates the relationships and dependencies
among various provenance entities defined based on the META-
CLIP ontology. Thus, the METACLIP functions properly estab-
lished the connection with their ontology. The dataset is iden-
tified as ”SUNSET Sample Seasonal Dataset”, categorized as
a ”ds:SeasonalHindcast” and is central in the graph’s structure.
From it, all metadata is added along the execution of the work-
flow. The metadata is well defined in the @context section
where each used ontology, either ”ds:”, ”cal:” or ”prov:”, is
unequivocally identified with their URI. In the @graph section
all the provenance information regarding the dataset -modeling
center, data provider, project, type of dataset, etc- and the cal-
ibration -calibration method, command call, package used,etc-
is recorded in triple form. The visual representation of the graph
effectively translates the detailed provenance information from
the JSON file into a more accessible format.

5. Conclusions

In conclusion, this report effectively demonstrated the pos-
sibility of a suitable integration of the METACLIP ontologies
and its environment into the Sunset workflow. By embedding
METACLIP specific R functions that detail provenance infor-
mation within a Sunset execution script, we have reached trans-
parency and traceability of a particular type climate products.
This project has not only facilitated a deeper understanding of
the ontology behind the definition of data, transformations and
relations provenance, but also paved a way for a further more
accurate implementation.

Moreover, this project implied the use of various new devel-
opment environments: GitHub, GitLab, R programming lan-
guaje, Conda environment, etc. We have improved our techni-
cal skills regarding the new software encountered and learned
how to address the managing and development of code coop-
eratively. The development of the project demonstrates how
collaboration and the integration of diverse expertise can lead
to rapid advancement and a suitable implementation in a rela-
tively short period of time. Finally, further advancements need
to be made regarding the implementation of the developed code

with real data, the expansion of the implementation throughout
a real workflow execution and a wider understanding of prove-
nance definition and management within the climate scenario.

10

6. Annexes

6.1. Example Recipe

Listing 2: Example Recipe
1 Description:

2 Author: V. Agudetse

3 Info: ECMWF System5 Seasonal Forecast Example recipe (monthly mean , tas)

4
5 Analysis:

6 Horizon: seasonal # Mandatory , str: ’subseasonal ’, ’seasonal ’, or ’decadal ’

7 Variables:

8 # name: variable name(s) in the /esarchive (Mandatory , str)

9 # freq: ’monthly_mean ’, ’daily ’ or ’daily_mean ’ (Mandatory , str)

10 - {name: ’tas’, freq: ’monthly_mean ’}

11 Datasets:

12 System:

13 # name: System name (Mandatory , str)

14 # member: ’all ’ or individual members , separated by a comma and in quotes

(decadal only , str)

15 - {name: ’ECMWF -SEAS5’, member: ’all’}

16 Multimodel: no # Either yes/true or no/false (Mandatory , bool)

17 Reference:

18 - {name: ’ERA5’} # Reference name (Mandatory , str)

19 Time:

20 sdate: ’1101’ # Start date , ’mmdd ’ (Mandatory , int)

21 fcst_year: ’2020’ # Forecast initialization year ’YYYY ’ (Optional , int)

22 hcst_start: ’1993’ # Hindcast initialization start year ’YYYY ’ (Mandatory ,

int)

23 hcst_end: ’2016’ # Hindcast initialization end year ’YYYY ’ (Mandatory , int)

24 ftime_min: 1 # First forecast time step in months. Starts at 1 . (

Mandatory , int)

25 ftime_max: 6 # Last forecast time step in months. Starts at 1 . (

Mandatory , int)

26 Region:

27 latmin: -90 # minimum latitude (Mandatory , int)

28 latmax: 90 # maximum latitude (Mandatory , int)

29 lonmin: 0 # minimum longitude (Mandatory , int)

30 lonmax: 359.9 # maximum longitude (Mandatory , int)

31 Regrid:

32 method: bilinear # Interpolation method (Mandatory , str)

33 type: to_system # Interpolate to: ’to_system ’, ’to_reference ’, ’none ’,

34 # or CDO -accepted grid. (Mandatory , str)

35 Workflow:

36 # This is the section of the recipe where the parameters for each module

are specified

37 Calibration:

38 method: mse_min # Calibration method. (Mandatory , str)

39 save: ’all’ # Options: ’all ’, ’none ’, ’exp_only ’, ’fcst_only ’ (Mandatory ,

str)

40 Anomalies:

41 compute: no # Either yes/true or no/false (Mandatory , bool)

42 cross_validation: no # Either yes/true or no/false (Mandatory if ’compute

: yes ’, bool)

43 save: ’fcst_only ’ # Options: ’all ’, ’none ’, ’exp_only ’, ’fcst_only ’ (

Mandatory , str)

44 Skill:

45 metric: RPSS CRPSS # List of skill metrics separated by spaces or commas.

(Mandatory , str)

46 save: ’all’ # Options: ’all ’, ’none ’ (Mandatory , str)

47 Probabilities:

48 percentiles: [[1/3, 2/3], [1/10, 9/10] , [1/4, 2/4, 3/4]] # Thresholds

49 # for quantiles and probability categories . Each set of thresholds should

be

50 # enclosed within brackets. (Optional)

51 save: ’percentiles_only ’ # Options: ’all ’, ’none ’, ’bins_only ’, ’

percentiles_only ’ (Mandatory , str)

52 Visualization:

53 plots: skill_metrics , most_likely_terciles , forecast_ensemble_mean #

Types of plots to generate (Optional , str)

54 multi_panel: yes # Multi -panel plot or single -panel plots. Default is ’no

/false ’. (Optional , bool)

55 projection: ’cylindrical_equidistant ’ # Options: ’cylindrical_equidistant

’, ’robinson ’, ’lambert_europe ’. Default is cylindrical

equidistant . (Optional , str)

56 mask_terciles: no # Whether to mask the non - significant points by rpss in

the most likely tercile plot. yes/true , no/false or ’both ’.

Default is no/false. (Optional , str)

57 dots_terciles: yes # Whether to dot the non - significant by rpss in the

most likely tercile plot. yes/true , no/false or ’both ’. Default is

no/false. (Optional , str)

58 ncores: 10 # Number of cores to be used in parallel computation .

59 # If left empty , defaults to 1. (Optional , int)

60 remove_NAs: yes # Whether to remove NAs.

61 # If left empty , defaults to no/false. (Optional , bool)

62 Output_format: ’S2S4E’ # ’S2S4E ’ or ’Scorecards ’. Determines the format of

the output. Default is ’S2S4E ’.

63 Run:

64 Loglevel: INFO # Minimum category of log messages to display: ’DEBUG ’, ’INFO

’, ’WARN ’, ’ERROR ’ or ’FATAL ’.

65 # Default value is ’INFO ’. (Optional , str)

66 Terminal: yes # Optional , bool: Whether to display log messages in the

terminal.

67 # Default is yes/true.

68 output_dir: /esarchive/scratch/vagudets/repos/sunset -outputs/ # Output

directory . Must have write permissions . (Mandatory , str)

69 code_dir: /esarchive/scratch/vagudets/repos/sunset/

6.2. RDF code

Listing 3: RDF simple extraction
1 library(redland)

2 library(yaml)

3 library(igraph)

4 library(rdflib)

5 library(jsonld)

6
7 read_recipe <- function(file_path) {

8 recipe <- yaml::yaml.load_file(file_path)

9 return(recipe)

10 }

11
12 extract_data <- function(recipe) {

13 components <- list()

14 components$reference_datasets <- recipe$Analysis$Datasets$System #

Extracting the system datasets name

15 components$system_datasets <- recipe$Analysis$Datasets$Reference #

Extracting the reference datasets name

16 components$time_datasets <-recipe$Analysis$Time

17 components$region_datasets <-recipe$Analysis$Region

18 return(components)

19 }

20
21 recipe <-read_recipe("C:/Users/User/Desktop/RECIPE.yml")

22 raw_metadata <-extract_data(recipe)

23
24 world <- new("World")

25 storage <- new("Storage", world , "hashes", name="", options="hash -type=’memory ’

")

26 model <- new("Model", world=world , storage , options="")

27
28 ds<-"http :// metaclip.predictia.es/datasource/datasource.owl"

29 prov <-"http ://www.w3.org/ns/prov"

30 rdf <-"http :// www.w3.org /1999/02/22 -rdf -syntax -ns#"

31 cal <-"http :// metaclip.predictia.es/calibration/calibration.owl#"

32 go <-"http :// metaclip.predictia.es/graphical_output/graphical_output.owl#"

33 skos <-"http ://www.w3.org /2004/02/ skos/core#"

34
35 #DATASET

36 stmt <- new("Statement", world=world ,

37 subject=paste0(ds,raw_metadata$system_datasets$name),

38 predicate=paste0(rdf ,"type"),

39 object=paste0(prov ,"Entity"))

40 # addStatement (model , stmt)

41 stmt <- new("Statement", world=world ,

42 subject=paste0(ds,raw_metadata$system_datasets$name),

43 predicate=paste0(rdf ,"type"),

44 object=paste0(ds ,"Dataset"))

45 addStatement(model , stmt)

46
47 # ModellingCenter

48 stmt <- new("Statement", world=world ,

49 subject=paste0(ds,raw_metadata$system_datasets$name),

50 predicate=paste0(ds , "hadModellingCenter"),

51 object=raw_metadata$reference_datasets$name)

52 addStatement(model , stmt)

53 stmt <- new("Statement", world=world ,

54 subject=paste0(ds,raw_metadata$reference_datasets$name),

55 predicate=paste0(rdf ,"type"),

56 object=paste0(prov ,"Agent"))

57 # addStatement (model , stmt)

58 stmt <- new("Statement", world=world ,

59 subject=paste0(ds,raw_metadata$reference_datasets$name),

60 predicate=paste0(rdf ,"type"),

61 object=paste0(ds ,"Organization"))

62 # addStatement (model , stmt)

63 stmt <- new("Statement", world=world ,

64 subject=paste0(ds,raw_metadata$reference_datasets$name),

65 predicate=paste0(rdf ,"type"),

66 object=paste0(ds ,"ModellingCenter"))

67 addStatement(model , stmt)

68 stmt <- new("Statement", world=world ,

69 subject=paste0(ds,raw_metadata$system_datasets$name),

70 predicate=paste0(ds , "hadDataProvider"),

71 object=raw_metadata$reference_datasets$name)

72 addStatement(model , stmt)

73
74 # HasDimensions

75 stmt <- new("Statement", world=world ,

76 subject=paste0(ds,"Dimension"),

77 predicate=paste0(rdf ,"type"),

78 object=paste0(ds ,"Dataset"))

79 # addStatement (model , stmt)

80 stmt <- new("Statement", world=world ,

81 subject=paste0(ds,"Dimension"),

82 predicate=paste0(rdf ,"type"),

83 object=paste0(ds ,"Entity"))

84 # addStatement (model , stmt)

85 stmt <- new("Statement", world=world ,

86 subject=paste0(ds,"Dimension"),

87 predicate=paste0(rdf ,"type"),

88 object=paste0(ds ,"Entity"))

89 # addStatement (model , stmt)

90 stmt <- new("Statement", world=world ,

91 subject=paste0(ds,raw_metadata$system_datasets$name),

92 predicate=paste0(ds , "SubClassOf"),

93 object="Dimension")

94 addStatement(model , stmt)

95
96 #Latitude(Dimension)

97 addStatement(model , stmt)

98 stmt <- new("Statement", world=world ,

99 subject=paste0(ds,"Dimension"),

100 predicate=paste0(ds , "hasDimensions"),

101 object="Latitude")

102 addStatement(model , stmt)

103 stmt <- new("Statement", world=world ,

104 subject=paste0(ds,"Dimension"),

105 predicate=paste0(ds , "hasDimensions"),

106 object="Longitud")

107 addStatement(model , stmt)

108
109
110 # Serialize the model to a TTL file

111 serializer <- new("Serializer", world , name="turtle", mimeType="text/turtle")

11

112 status <- setNameSpace(serializer , world , namespace="http ://www.w3.org /2000/01/

rdf -scheme", prefix="rdf")

113 status <- setNameSpace(serializer , world , namespace="http :// metaclip.predictia.

es/datasource/datasource.owl", prefix="ds")

114 status <- setNameSpace(serializer , world , namespace="http ://www.w3.org/ns/prov"

, prefix="prov")

115 filePath <- filePath <- "C:/ Users/User/Desktop/recipe_output.ttl"

116 status <- serializeToFile(serializer , world , model , filePath)

117 readLines(file(filePath))

6.3. Final code

Listing 4: Final implementation script
1 source("modules/Loading/Loading.R")

2 source("modules/Calibration/Calibration.R")

3 source("modules/Skill/Skill.R")

4 source("modules/Saving/Saving.R")

5 source("modules/Visualization/Visualization.R")

6
7 library(metaclipR)

8
9 recipe_file <- "recipes/atomic_recipes/recipe_seasonal_provenance.yml"

10 recipe <- prepare_outputs(recipe_file)

11 # archive <- read_yaml(paste0(recipe£Run£code_dir , "conf/ archive_decadal .yml "))

£archive

12
13 # Load datasets

14 data <- Loading(recipe)

15
16 metadata.seas5 <- metaclipR.Dataset(

17 Dataset.name = "SUNSET␣Sample␣Seasonal␣Dataset",

18 DataProvider = "ECMWF",

19 # DataProvider .URL = url ,

20 Dataset.subclass = "SeasonalHindcast", # Right?

21 Project = "SEAS5", # ?

22 ModellingCenter = "ECMWF"

23)

24 # TODO: Create ensemble metaclipR.Ensemble ()

25
26 # Calibrate datasets

27 calibrated_data <- Calibration(recipe , data)

28
29 # Register the calibration ...

30 metadata_calibrated <- metaclipR.BiasCorrection(

31 package="modules/Calibration/Calibration.R",

32 "1.0",

33 BC.method = "bias", # from recipe

34 fun = "Calibration",

35 arg.list = list(

36 recipe ,

37 data

38),

39 TrainingGraph = metadata.seas5 , # ?

40 ReferenceGraph = metadata.seas5 , # ?

41 graph = metadata.seas5

42)

43
44 # Compute skill metrics

45 skill_metrics <- Skill(recipe , calibrated_data)

46
47 # Compute percentiles and probability bins

48 probabilities <- Probabilities(recipe , calibrated_data)

49
50 # Plot data

51 # Visualization (recipe , calibrated_data , skill_metrics , probabilities ,

52 # significance = T)

53
54 dev.off()

55 plot(metadata_calibrated$graph)

56 graph2json(metadata_calibrated$graph , "/tmp/graph.json")

57
58 print("OK!")

6.4. JSON file

Listing 5: Final implementation script
1 {

2 "@context": {

3 "ds": "http ://www.metaclip.org/datasource/datasource.owl#",

4 "ipcc": "http ://www.metaclip.org/ipcc_terms/ipcc_terms.owl#",

5 "veri": "http ://www.metaclip.org/verification/verification.owl#

",

6 "cal": "http ://www.metaclip.org/calibration/calibration.owl#",

7 "go": "http ://www.metaclip.org/graphical_output/

graphical_output.owl#",

8 "prov": "http ://www.w3.org/ns/prov#",

9 "rdfs": "http ://www.w3.org /2000/01/ rdf -schema#",

10 "dc": "http ://www.w3.org /2002/07/ owl",

11 "skos": "http ://www.w3.org /2004/02/ skos/core#"

12 },

13 "@graph":[{

14 "@id": "#Dataset.moijnv",

15 "@type": "ds:SeasonalHindcast",

16 "rdfs:label": "SUNSET␣Sample␣Seasonal␣Dataset"

17 ,

18 "cal:hadCalibration": {

19 "@id": "#Calibration.rjtqna",

20 "@type": "cal:Calibration",

21 "rdfs:label": "Calibration"

22 ,

23 "cal:withCalibrationMethod": {

24 "@id": "#bias.fdsliz",

25 "@type": "BiasCorrection",

26 "rdfs:label": "bias"},

27 "cal:withTrainingData": { "@id": "#Dataset.moijnv"

28 },

29 "cal:withReferenceData": { "@id": "#Dataset.moijnv"

30 },

31 "ds:hadCommandCall": [{

32 "@id": "#Calibration.dknwmb",

33 "@type": "ds:Command",

34 "rdfs:label": "Calibration",

35 "prov:value": "Calibration"

36 ,

37 "ds:fromPackage": {

38 "@id": "#modules/Calibration/Calibration.R.ralbwe",

39 "@type": "ds:Package",

40 "rdfs:label": "modules/Calibration/Calibration.R"}},{ "@id": "#

Calibration.dknwmb"

41 }]},

42 "ds:hadProject": {

43 "@id": "#Project.fepswo",

44 "@type": "ds:Project",

45 "rdfs:label": "SEAS5"},

46 "ds:hadModellingCenter": {

47 "@id": "ds:ECMWF",

48 "@type": "ds:DataProvider",

49 "rdfs:label": "ECMWF"},

50 "ds:hadDataProvider": { "@id": "ds:ECMWF"

51 }}]}

References

[1] Bedia J. (2018). climate4R.climdex: Climate Change Index Calculation
for climate4R Data. R package version 0.1.3. http://meteo.unican.
es/climate4R.

[2] Brickley D., Guha R.E. (2014). RDF Schema 1.1. W3C Recom-
mendation World Wide Web Consortium. https://www.w3.org/TR/
rdf-schema/.

[3] Bronaugh D. (2015). climdex.pcic: PCIC Implementation of Climdex
Routines. R Package Version 1.1-6. https://CRAN.R-project.org/
package=climdex.pcic.

[4] Candan K.S., Liu H., Suvarna R. (2001). Resource description frame-
work: metadata and its applications. ACM SIGKDD Explorations
Newsletter, 3 (1), 6–19.

[5] GitHub. (2023). Sunset: Topic on GitHub. Available at: https://

github.com/topics/sunset.
[6] Santander Met Group. (2023). Climate4R: A suite of R packages for cli-

mate data access, post-processing, downscaling, and visualization. Avail-
able at: https://github.com/SantanderMetGroup/climate4R.

[7] W3C. (2024). PROV-O: The PROV Ontology. World Wide Web Consor-
tium. Available at: https://www.w3.org/TR/prov-o/.

[8] Metaclip. (2023). metaclipR: [Software]. Available at: https://

github.com/metaclip/metaclipR.
[9] CRAN. (2023). The Comprehensive R Archive Network: Available

R Packages. Available at: https://cran.r-project.org/web/

packages.html.
[10] Hassell D., Gregory J., Blower J., Lawrence B.N., Taylor K.E. (2017). A

data model of the climate and forecast metadata conventions (cf-1.6) with
a software implementation (cf-python v2.1). Geosci. Model Dev. (GMD)
10(12), 4619–4646.

[11] Hewitt C., Mason S., Walland D. (2012). The global framework for cli-
mate services. Nat. Clim. Chang. 2(12), 831–832.

[12] Hills D.J., Downs R.R., Duerr R., Goldstein J.C., Parsons M.A.,
Ramapriyan H.K. (2015). The importance of data set provenance for sci-
ence. Eos 96.

[13] Hogan A., Harth A., Polleres A. (2009). Scalable authoritative OWL rea-
soning for the web. International Journal on Semantic Web and Informa-
tion Systems 5(2).

[14] Iturbide M., Bedia J., Herrera S., Baño-Medina J., Fernández J., Frı́as
M., Manzanas R., San-Martı́n D., Cimadevilla E., Cofiño A., Gutiérrez J.
(2019). The R-based climate4R open framework for reproducible climate
data access and post-processing. Environ.

[15] Ma X., Zheng J.G., Goldstein J.C., Zednik S., Fu L., Duggan B., Aulen-
bach S.M., West P., Tilmes C., Fox P. (2014b). Ontology engineering
in provenance enablement for the national climate assessment. Environ.
Model. Softw 61, 191–205.

[16] Gutiérrez, J.M., Bedia, J., Iturbide, M., Herrera, S., Manzanas, R., Med-
ina, J.B., Frı́as, M.D., San-Martı́n, D., Fernández, J., Cofiño, A. (2018).
Climate Research Reproducibility with the Climate4R R-based Frame-
work. In Proceedings of the 8th International Workshop on Climate In-

12

http://meteo.unican.es/climate4R
http://meteo.unican.es/climate4R
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-schema/
https://CRAN.R-project.org/package=climdex.pcic
https://CRAN.R-project.org/package=climdex.pcic
https://github.com/topics/sunset
https://github.com/topics/sunset
https://github.com/SantanderMetGroup/climate4R
https://www.w3.org/TR/prov-o/
https://github.com/metaclip/metaclipR
https://github.com/metaclip/metaclipR
https://cran.r-project.org/web/packages.html
https://cran.r-project.org/web/packages.html

formatics (CI2018). NCAR Technical Note NCAR/TN-550+PROC, doi:
10.5065/D6BZ64XQ.

[17] Moreau, L., Groth, P., Cheney, J., Lebo, T., Miles, S. (2015). The Ra-
tionale of PROV. Web Semantics: Science, Services and Agents on the
World Wide Web, 35, 235–257. Elsevier.

[18] Agudetse, V., Rifà, E., Ho, A-C. (2023). Climate Forecast Analysis
Hands-On Tutorial: R Tools. BSC Training Course 2023.

13

	Introduction
	METACLIP
	RDF-based approach for provenance description
	Metaclip vocabularies
	metaclipR: Climate4R extension

	SUNSET
	SUNSET: Workflow
	SUNSET: Environment, Gitlab and Conda

	Provenance integration
	First approach: Familiarization and identification
	RDF generation using R locally
	METACLIP integration in Sunset: environment setting
	METACLIP integration in Sunset: Developed code
	METACLIP integration in Sunset: Final execution

	Conclusions
	Annexes
	Example Recipe
	RDF code
	Final code
	JSON file

