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1 Introduction

1.1 Need for Seasonal Climate Forecasting

Forecast or prediction is an estimate of future event. Forecasts have to be verified by comparing them

with observations. There are forecasts for economic indicators such as unemployment and inflation as well

as forecasts for weather such as daily temperature. There are also forecasts for climate, which are made on

seasonal, annual or decadal time scale. Forecasts are useful for effective decision making as they help minimize

risks associated with uncertainty. For example; extreme climate events, such as floods and heatwaves can

be destructive to humans, animals and environment. Hence, climate forecasting is an essential component

of managing risks associated with extreme climate events.

Figure 1: Global Economic Losses by Peril, adapted from http://thoughtleadership.aonbenfield.com

Understanding the costs of climate variability provides a context in which the use of climate forecast can

be valued. In 2015, the global economic loss by perils exceeded EUR 109 billion (Fig 1). Recent hydrological

extreme events demonstrate the vulnerability of European society to water-related natural hazards and

there is strong evidence that climate change will worsen these events [1]. The IMproving PRedictions and

management of hydrological EXtremes (IMPREX) project is designed to support the reduction of Europe’s

vulnerability to extreme hydrological events through improved understanding of the intensity and frequency

of future disrupting features. IMPREX invests in improving current state-of-the-art forecasting systems and

the development of new forecasting tools. It also focuses on customizing climate information to stakeholders’

needs. This thesis takes place in the current framework of IMPREX project.
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1.2 Seasonal Climate Forecast

Seasonal climate forecasts (SCFs) are forecasts of climatic events at timescales of few weeks up to a few

months. It is different from weather forecasting that are made a few days into the future. It also differs

from climate change which focuses on predicting changes in climate in very long time scale such as century.

Figure 2 illustrates various weather and climate scales and the sources of predictability for each timescale.

This thesis is focused on the predictability of climatic event on a seasonal scale which falls in the category

of climate variability. What is the probability of having warmer or colder temperature during a season at a

certain place given past observed temperatures? SCF aims to estimate such probabilities. It provides the

range of values which is most likely to occur during the next season. It is important to bear in mind that

it is not possible to predict the daily weather variations at a specific location months in advance due to the

complex and stochastic nature of the atmospheric circulation. However, it is possible to predict anomalies

in long-term climatic conditions to a certain extent.

Figure 2: Weather and Climate Scales, adapted from: http://www.pacificclimatefutures.net

SCFs are currently under utilized for prevention, adaptation and prediction by the public and economic

sectors. In Europe, the use of SCF is limited to particular sectors such as energy, water, insurance, and

transport [2]. This is partly because the existing skill and reliability of SCFs in Europe is low and varies

considerably depending on the geographical area, the time of the year and the climate variable [2]. This is

also because climate forecasts in general are poorly understood due to the lack of communication between

providers and end-users of SCFs [3].

General Circulation Models (GCMs) are the dynamical models that employ mathematical equations

and simulate the Earth’s atmosphere, oceans or both (known as coupled GCMs). Dynamical models have

seasonal forecast skills in regions with strong connection to ENSO [4]. However, the predictions from GCMs

are penalized due to model biases and uncertainties. Uncertainties arise due to the limited information
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regarding the state of the ocean, sea-ice, snow, land and the physical processes of their interactions [5] and

also due to the inability to perfectly model the dynamic climate system [6]. Uncertainties in the initial

state have impact on model skill and the growth of forecast errors. For example, an initial value problem is

predicting an ENSO state that affects the predictions of later states. Figure 3 illustrates ensemble generation

and modelling that incorporates some of these uncertainties, which has made longer time scale prediction

more plausible [7]. In this thesis, I use ensemble forecasts. I provide further detail on ensemble in following

sections.

Figure 3: Process of ensemble generation from General Climate Model (GCM)

1.3 Values of Seasonal Climate Forecast

Advanced information in the form of SCFs can improve decision-making, increase preparedness and lead

to better socio-economic and environmental outcomes. In some parts of the world such as Europe, SCFs

may have economic values. In some other parts of the world, such as areas extremely vulnerable to climate

hazards, it may be a matter of life and death. Inclusion of SCFs in the detection, monitoring and early

warning of climate hazards can increase the warning time and information to effectively minimize associated

risks [8].

The benefits of SCFs are particularly high in areas with high climate variability [9] [8]. For example; in

the northern part of the Australian grain belt, wheat is grown in an extremely variable climate [9]. Decision

Support Systems (DSS) can quantify risks associated with various decision options prior to planting by

integrating knowledge of long-term climate records, development pattern of plantations and response to

various fertilizers. The payoff to using fertilizer depends on the chance of getting a high-yielding season [9].

However, the range of likely yield is often wide as it depends on the extent of climate variability. Hence,

the eventual outcome is strongly dependent on the uncertain nature of that season and its interaction with

the decisions made at planting time. This provides further compelling reason to understand, monitor and
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predict climate variability.

Research programs such as Climate Change, Agriculture and Food Security (CCAFS) are designed

to work with farming communities to build climate-smart villages that aim to achieve food security and

broader development goals under a changing climate and increasing food demand. In Yatenga region of North

Burkina, farmers have to cope with erratic rainfall patterns, varying greatly every year. Overall, majority of

farmers exposed to climate information showed willingness to pay for seasonal forecasts indicating benefits

of SCFs [10]. It led to higher yield on average for the production of cowpea while also saving in seed and

pesticides costs. However, similar economic benefits were not realized for sesame production. This indicates

the importance of assessing the capacity to understand and interpret forecasts for specific contexts in order

to optimize the potential of good years and minimize the losses during poorer years.

Figure 4: An example of hydroeconomic-model that integrates biophysical modeling with economic modeling, adapted from:

http://www.ecy.wa.gov

Appropriate integration of seasonal precipitation and temperature forecasts can provide an opportunity

for developing a proactive approach towards water management. Singla et al. [11] studied the importance

of wet land conditions for spring predictability of the hydrological system over France and found that the

predictive skill varied among regions based on seasonal climate and elevation. For example; significant

improvement of river flow was observed in the north-east of France but not in Mediterranean area. Similarly,

Kahil et al. [12] presented a hydro-economic model for sustainable water management in an arid and

semiarid basin in Southeastern Spain. Figure 4 illustrates their model, which estimates the distribution

of available water among users under each anticipated climatic scenarios. Their model takes into account

interaction between supply nodes such as rivers, reservoirs, aquifers and demand nodes such as irrigation

districts, households and aquatic ecosystems. It is then incorporated into an economic model that searches

for optimal behavior of water-use under a set of technical and resource constraints. They concluded that
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having a water policy that accounts for detailed regional-economic component is optimal for the society[12].

Furthermore, increasing climate variability has increased the demand of weather-related insurance,

bringing the financial instrument of weather derivatives to the fore [13]. The weather derivative market

ties contract values to location-specific weather outcomes in order to hedge potential temperature risks[14].

Stern presented an approach to the pricing of weather derivatives that employed a combination of empirical

data including forecast verification data, regional synoptic classification data and data associated with cli-

mate indices on a global scale such as the Southern Oscillation Index[14]. Carriquiry and Osgood [15] also

emphasized the value of Index-based weather insurance that encourage farmers to take advantage of more

profitable options when climate risks are lower and to take more protective measures when the risks are

higher.

All these examples above illustrate the values of SCFs across a range of application sectors to manage

risks and prepare better for the future. Recent developments in climate research has led to increased

interest in SCFs within academia, research institutes and meteorological forecast services. Much of these

developments are related to the identification of sources of predictability of SCFs, which is discussed in the

next section.

1.4 Seasonal Climate Prediction

The enormous value of seasonal forecasts calls for a comprehensive understanding of the sources of

predictability for both seasonal temperature and precipitation. For example, the anthropocentric emissions

of greenhouse gases (GHGs) are leading to a global climatic warming, illustrated in Figure 5. Coupled

dynamic models are able to capture this evolution. Therefore, this strong warming trend is a source of

predictability on a seasonal timescale, especially over Europe [16].

Figure 5: Global Land and Ocean Temperature Anamolies, adapted from: http://thoughtleadership.aonbenfield.com

El Niño Southern Oscillation (ENSO) is the most important mode of climatic variability. ENSO refers
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to the periodical variation in wind and SST in the tropical eastern Pacific Ocean that causes large spatial

shifts in global atmospheric and precipitation patterns [17]. The positive phase of ENSO, known as El Niño,

is associated with the warm SST anomalies that cause an increase in heat flux from ocean to atmosphere.

This brings about changes in the structure of rainfall and in the release of latent heat in the troposphere.

The negative phase of ENSO, known as La Niña, is characterized by the opposite extreme of the ENSO

cycle. ENSO events last approximately 1 year and the time between the two phases varies between 2 and 7

years [4].

Accurate prediction of ENSO is linked to improved prediction of climate pattern over tropics and

subtropics [18]. Variations associated with ENSO have also led to increased skill in predicting extreme

temperatures [8]. Other tropical ocean basins also have major impact on climate variability of surrounding

regions. For instance, SST anomalies over the tropical Atlantic affect the precipitation pattern over north-

eastern Brazil and western Africa [19] [17]. Interestingly, SST variability of the Atlantic and Indian basins

are linked to that of the tropical Pacific suggesting interdependence between ocean basins and resulting SST

anomalies [19] [20]. Thus, SCF is mainly possible due to the predictability of the oceanic circulation and

by the fact that variability in tropical sea surface temperatures (SST) have a significant global impact on

the atmospheric circulation [4]. Large SST anomalies can alter the atmospheric boundary layer which can

change the structure of rainfall and the intensity of latent heat in the troposphere [8]. This further impacts

the atmospheric circulation leading to climatic anomalies.

Besides variations in SST, atmospheric pressure, snow cover [21], soil moisture [22], and sea-ice [23]

are also proven to be effective sources of predictability. North Atlantic Oscillation (NAO) is an index

of normalized pressure difference between Iceland and the Azores. NAO exhibits large scale interannual

variability which are considered to cause shifts in seasonal climate in the nearby continents [24]. It is of

particular interest to the western Europe and eastern United States as it has been linked to the winter

climate variability around the Atlantic basin [25] [22]. Recently, Scaife et al. (2014) have suggested that

NAO could be predicted by the UK MetOffice’s GLosea5 system forecast [25].

The insulating and reflecting properties of the snow along with its role in the hydrological cycle has

also been useful in climate prediction [4]. Recent observational and model studies have noted local effects

of snow-cover on surface air temperatures and on large-scale circulation patterns. For example; the colder

surface over Eurasia during the extensive snow periods was found to influence the planetary-scale wave and

the subsequent climate in the Euroasian landmass [26].

Similarly, the preconditioning of extreme summer temperatures by preceding precipitation suggests

soil-moisture information to be essential for correctly predicting summer temperatures over land [27]. For

example, dry condition in the soil moisture preceding the heat wave allowed more energy for sensible heating

and thus created suitable condition for increase of near surface temperature, leading to the occurrence of
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2010 heat wave over Russia (Fig 6) [22]. Although, initial soil moisture data has led to better temperature

forecasts in some regions, the impacts of land-surface initialization on predicting variability of seasonal

climate over the European region is considered to be relatively low [22].

Figure 6: Temperature anomalies based on land surface temperatures ob-

served on NASA’s Terra satellite for the Russian Federation from July 20–27,

2010, compared to temperatures for the same dates from 2000 to 2008. Ar-

eas with above-average temperatures (red), areas with below-average tem-

peratures (blue) and oceans and lakes (gray) are shown, adapted from:

http://earthobservatory.nasa.gov

Researches have also shown improve-

ments in forecast skill over land and

extra-tropical oceans due to a better

representation of anthropogenic green

house gases (GHGs) forcing and land-use

changes [28] [29]. Large scale deforesta-

tion during the industrial era in Euroa-

sia and North America for agricultural

cropping and grazing lands has been as-

sociated with climate variations [30]. The

largest effect of deforestation is estimated

to be at high latitudes because the snow-

covered open grounds reflect more sun-

light than snow on trees [31].

Thus, complex interdependent na-

ture of the climate system makes sea-

sonal climate prediction inherently diffi-

cult. However, it is possible. As discussed above, various sources of predictability have been identified to

improve climate prediction on seasonal time scale, leading also to an increase in its demand. As we rely more

on SCFs to minimize risks, assessing the quality of these forecasts becomes a topic of utmost importance.

This process, known as forecast verification, is essential to any scientific forecasting system. If we do not

verify SCFs then we have no way of learning whether these forecasts are indeed better than the best guess we

make or the best model we are using. Hence, forecast verification is essential because it provides users with

best available information needed for improved decision-making, increased preparedness, leading to better

socio-economic and environmental outcomes. In the next section, I briefly discuss the context of forecast

verification within climate science along with further description on ensemble forecast, which is the type of

forecast I use in this thesis.

1.5 Forecast Verification in the context of Climate Prediction

In 1884 J.P. Finley published a paper in American Meteorological Journal, where he reported “percentage

of verification” exceeding 95% for an experimental tornado forecasting program (Fig 7) [32]. The index of
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performance was defined as percent of correct tornado over no-tornado forecasts, 2708/2803 = 96.6%. This

index was criticized by many as inappropriate measure of performance in this context because it is possible

to do even better by always forecasting “No Tornado” and get 2752/2803 = 98.2% forecast success rate [33].

Figure 7: Finley’s Tornado Forecast in terms of 2 x 2

contingency table, adapted from Murphy, 1996

Allan Murphy, who is considered a pioneer in the

field of forecast verification, distinguished three types of

“goodness” of a forecast: (1) Consistency (2) Quality and

(3) Value [34]. As seen in the case of Finley’s tornado

forecasts, Murphy argued that reducing vast amount of

information from a set of forecasts and observations into

a single verification measure can misinterpret verification

results [35]. He also noted that value of forecast is often

more important than skill alone emphasizing the need for user-oriented approach in forecast verification [34].

He suggested instead a diagnostic verification approach based on the joint distribution of the forecasts and

observations [33]. Given a sufficiently large data set, the joint distribution can be interpreted as an empirical

relative frequency distribution. Diagnostic verification on joint distribution gives information about the

nature of forecast errors as well as clues as to the sources of the errors [7], which makes this approach

particularly appealing. In this report, I also take distribution oriented diagnostic verification approach for

the assessment of SCF skill over Europe.

In the last decade, research and development of new verification strategies and reassessment of tradi-

tional forecast verification methods have received a great deal of attention from the scientific community

[7]. Verification practices vary between different national services. The World Meteorological Organization

(WMO) provides a Standard Verification System for Long-Range Forecasts that is intended to facilitate the

exchange of comparable verification scores between different centres [33]. Besides there is also a constant

need to adapt practices as forecasts, data and users continue to change [33]. For example, the advances in

spatial forecasting has complicated the verification process as access to a wider range of satellite imagery

has led to redefinition of cyclones [33]. Hence, apparent trends in cyclone frequency could be due to changes

of definition rather than to genuine climatic trends.

Another example is the use of ensembles, illustrated in Figure 8, which were infeasible 30 years ago

but are now widespread [7]. The seasonal temperature and precipitation forecasts used in this report also

consists of ensemble forecasts. Ensemble is a collection of several independent forecasts generated by first,

sampling (usually via Monte Carlo techniques) slightly different initial conditions using observations and then,

calculating the evolution of these states using dynamical models. Rather than integrating single best guess

of the initial condition, this method is more consistent with the true stochastic nature of the atmospheric

flow [33]. Wide variation in ensemble forecasts suggest a lot of uncertainty while low ensemble variance

provide more confidence in predicting a particular event [7]. Good ensemble behave as representatives of
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random draws from the “true model state” and provide an estimate of the forecast uncertainty [33]. Thus,

if the initial condition from the ensemble truly characterize the “true” initial condition uncertainty, and

if the atmospheric dynamics are well represented by the model, then the forecast ensemble can accurately

represent the true atmospheric state. However, in practice, neither are the models perfect nor is it easily

possible to construct the true representative state of initial conditions. Thus, specific issues continue to arise

and need for further research and development in forecast verification remains.

Figure 8: Ensemble generation and modelling, adapted from:

http://en.ilmatieteenlaitos.fi

Much of the discussion made thus far is aimed

towards drawing the reader’s attention to (1) the

need of SCFs, (2) the sources of predictability and

the associated complexity of climate prediction and

(3) the subsequent difficulty to verify SCFs in a com-

prehensive manner. In the following sections, I will

focus on the skill assessment of EUROSIP’s ensem-

ble forecasts for seasonal precipitation and temper-

ature over Europe. In particular, I assess the fore-

cast skill for each of the four forecasting models pro-

vided by EUROSIP and compare how they perform

throughout the European region. I perform this assessment for winter and summer season for both temper-

ature and precipitation. Then, I proceed to assess the forecast skill of multi-model ensemble system, which

is forecasts based on average of the four individual models. Multi-models often outperform the best single

forecast system [36]. Therefore, I aim to assess whether forecast skill can be gained in regions with low skill

through the multi-model approach. In section 2, I provide a detailed description of the ensemble forecast

data and the methodologies used for forecast verification. In Section 3, I present the subsequent results of

each forecast verification methods followed by a final conclusion in Section 4.
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2 Methodology

2.1 Data

Observation

The observation dataset for temperature are obtained from ERA-Interim (ERAint) database. ERAint

consists of a reanalysis of global atmosphere since 1979 and continues in real time [37]. Initial condition

for ERAint atmospheric model is obtained through the 2006 release of cycle 31r2 of ECMWF’s Integrated

Forecasting System (IFS). Additional information on data assimilation system and modelling can be found in

the IFS Cy31r1 documentation [38]. ERAint system includes a 4-dimensional variational analysis (4D-Var)

with a 12-hour analysis window. The spatial resolution of the data set is ≈ 80 km (T255 spectral) on a

reduced Gaussian grid on 60 vertical levels from the surface up to 0.1 hPa [38].

The observation dataset for precipitation is obtained from Global Precipitation Climatology Project

(GPCP). GPCP provides a combined observation-only dataset, which is a gridded analysis based on gauge

measurements and satellite estimates of precipitation. GPCP has promoted the development of an analysis

procedure for blending various estimates together to produce the necessary global gridded precipitation

fields [39]. Further details on their operational procedure is documented in GPCP Version 2.2 Combined

Precipitation Data Set covering the period January 1979 through the present [39]. The values are represented

in a grid of 2.5x2.5 latitude–longitude (Cylindrical Equal Distance) global array of points.

Forecasts

Ensemble Forecast System No. of Members

1 Global seasonal forecasting system (Glosea5, Met Office) 24

2 European Centre for Medium Range Weather Forecasts (System4, ECMWF) 51

3 National Centers for Environmental Prediction (System2, NCEP) 24

4 Meteo France (System4, MF) 15

Table 1: List of Coupled Seasonal Forecasting System integrated in EUROSIP’s database

Table 1 lists the forecast systems from which the data was obtained for the analysis of forecast skill

assessment. These forecast systems include a comprehensive set of seasonal forecasts of temperature and pre-

cipitation over Europe. They are provided by the EUROSIP database that consists of these four independent

coupled seasonal forecasting systems integrated into a common framework [37].
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Location and Time Period

The data set covers temperature and precipitation values for location specified as 20o W to 70o E and

25o N to 75o N, which covers the European region of our interest. The final grid is of dimension 71x128. The

forecast grids from four models were interpolated to matched the observation grid. Verification at a single

grid represents an evaluation of forecasts across time at that grid location. The data are loaded from the

storage, interpolated and the sea point are masked using the Load function of the s2dverification (version

2.6.0.) https://cran.r-project.org/web/packages/s2dverification/ package in R.

The data is obtained on a monthly time scale i.e. the values on each grid point refers to the monthly

averages of daily means. Seasonal data for winter and summer is obtained for the years between 1992 to 2012.

Winter data consists of months June, July and August (JJA) with 1st of May as initialization date. Summer

data consists of months December, January and February (DJF) with 1st of November as the initialization

date. The initialization dates are also known as starting dates from which the model starts the forecasts.

The lead time, which refers to the number of months the experiments are set to be run, is 3.

Tools

The final format of the data obtained is a list of 4 R objects; (1) array of observations (1x1x21x3x71x128),

(2) array of ensemble forecasts (4x51x21x3x71x128), (3) vector of longitudes (128x1) and (4) vector of

latitudes (1x71). The names of the dimensions of the arrays are listed in Table 2 below:

Dimension Name Dimension Size

1 Experimental/observation datasets 4 / 1

2 Ensemble members max 51 (varies per model)

3 Start dates 21

4 Lead times 3

5 Longitudes 128

6 Latitudes 71

Table 2: List of the names of 6-dimensional array of the data obtained for analysis in this report

Both forecast and observation data are imported from Barcelona Supercomputing Centre (BSC) system

database using in-house R package, s2dverification (version 2.6.0.). The package is developed in collabora-

tion between BSC and Institut Català de Ciències del Clima (IC3). All of the verification assessments are

done using functions available in s2dverification, easyVerification (version 0.6.0) https://cran.r-project.

org/web/packages/easyVerification/index.html, and specsVerification (version 0.4.1) https://cran.

r-project.org/web/packages/SpecsVerification/index.html in R. These packages provide a set of tools
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to efficiently perform forecast verification analyses on data stored as an array in R. Readers are referred to

the github repository: https://github.com/nitimkc/Seasonal_Forecast_Verification for more infor-

mation on the specific use of these packages along with relevant code scripts.

2.2 Methods of Forecast Verification

There are numerous ways of assessing forecast quality and different types of forecasts call for different

verification methods. Therefore, it is important to identify verification goal in order to choose correct

verification statistics, measures and graphics that match the type of forecast and the attribute of interest.

Table 3 below distinguishes forecasts along with verification methods that are appropriate for that type of

forecast. Items in red circle represent the type of forecasts used in this report for verification analyses.

Nature of Forecast Examples Verification Methods

Visual Dichotomous Multi-category Continuous Probabilisitc Ensemble Spatial

Deterministic (Non-probabilistic) Quantitative precipitation forecast X X X X X

Probabilistic Probability of precipitation, ensemble forecast X X X

Qualitative 5-day outlook X X X

Space-Time Domain

Time Series Daily maximum temperature for a city X X X X X

Spatial Distribution Map of geopotential height, rainfall chart X X X X X X X

Pooled Space and Time Monthly average global temperature anomaly X X X X X

Specificity of Forecast

Dishotomous (yes/no) Occurrence of fog X X X X X

Multi-category Cold, normal, or warm conditions X X X X X

Continous Maximum temperature X X X X X

Object- or Event-oriented Tropical cyclone motion and intensity X X X X X X

Table 3: Appropriate verification methods for different forecast types. Items in circle represent the type of

forecasts used in this report, adapted from: http://www.cawcr.gov.au/projects/verification/

As the goal of this report is to assess the skill of ensemble forecasts for seasonal temperature and

precipitation that are continuous in nature, I use corresponding verification methods for their skill assessment.

In particular, I take a diagnostic verification approach in my analysis and look at the joint relationship

between the forecasts of each model and the observation. Diagnostic verification approach is favorable for

skill assessment because it takes into account the full distribution of both forecasts and observations. This is

useful as various aspects of forecast quality can be explored by factoring the joint probability of observation

and forecast into conditional and marginal distributions [33].

Based on the joint relationship between forecast and observation, a scoring rule can assign numerical

scores to the performance of a forecasting model in numerous ways. Depending on its construction, scoring

rule can be positively or negatively oriented, meaning either high or low score may be preferred. All distri-

bution oriented scoring rules can be decomposed to explore not only the nature of forecast errors but also
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gain clues as to the sources of the errors [7], which helps improve forecast models. A scoring rule. s(p, x),

is said to be proper if given a forecaster issues the predictive distribution p and observation x is realized

from distribution q, the expected score is maximized when p = q. The scoring rule is strictly proper, if the

expected score is uniquely maximized [40].

Another appealing aspect of scoring rule is that it allows a meaningful comparison between two forecast

models. Indeed, forecasts are often judged in relative terms meaning they are compared to forecasts from

another model to determine their skill score. Skill score is a statistical approach of evaluating the accuracy

of a forecast over a reference forecast. It is defined as:

Skill score =
Score− Sref

Sperf − Sref
(1)

where Sref is the score of reference forecast and Spref is the score of perfect forecast. It is an index that

takes the value 1 for perfect forecast skill and 0 for same skill as the reference forecast. A negative value

implies worse skill than the reference model [33]. There are usually a whole range of possible skill scores that

measures the relative quality of different forecasts. Therefore, it is necessary to define a baseline against which

a forecast can be judged [33]. Two common baseline forecasts used in climate science are (1) Persistence

and (2) Climatology. Persistence is forecasting whatever is observed at the present time as the forecast to

persist into the next period. This strategy is often successful for short-range forecasts. Climatology refers

to the average conditions over some recent reference period. Climatology is defined as:

X̂CLIM = E(X) =
1

N

n∑
t=1

xt

where N is the total number of observations over time and xt is value of the observations at a given time. In

this report, climatology is used as the reference forecast for skill comparison as it is the standard reference

for long-range forecasts.

For the first part of the forecast verification analysis, Pearson’s correlation coefficient measure is used to

obtain temporal correlation between forecasts and observations. Then, the ensemble forecasts are converted

into probabilistic forecasts and the Continuous Probability Ranked Skill Score (CRPSS) is computed for

each of the models. However, CRPSS has a few drawbacks which can be partly corrected by Fair Continuous

Probability Ranked Skill Score (FCRPSS), which is the final skill score used for analysis in this report. The

same methodology is repeated for multi-model forecasts that is obtained by averaging the four independent

forecast systems. In this report, correlation and CRPSS are considered because these assessment methods are

also used within the hydrologists’ community of IMPREX to asses the usefulness of seasonal forecasts used

in their hydrological model. Such hydrological models require complete distribution of the seasonal forecasts.
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Hence, instead of converting the forecasts into rain or no-rain type of binary or categorical forecasts, we use

the whole ensemble and its probability distribution for the skill assessment.

2.2.1 Correlation

Correlation coefficient is the association attribute of forecast quality. It measures the linear association

between two variables. It is a measure that is invariant to shifts in the mean and is not affected by data

transformation. Due to this invariance property, correlation is widely used in weather and climate forecasting

[33].

I use the Pearson’s correlation coefficient measure to assess the linear temporal consistency between the

forecasts and the observations for the 21 years of 1992-2012. The correlation coefficient is calculated for each

grid by using the formula below:

ρ = cor(X, X̂) =
cov(X, X̂)√

var(X), var(X̂)
(2)

where

cov(X, X̂) =
1

N

n∑
t=1

(xt − x̄t)(x̂t − ¯̂xt)

is the covariance between the observations and forecasts which is estimated from past samples, t = 1, ..., N .

var(X) and var(X̂) refer to variances of observations and forecasts, respectively.

A parametric approach is taken to test the significance of correlation for each grid point. The test is to

reject the null hypothesis of no-skill based on assumption that the forecasts and observations are independent

and normally distributed. Under this null hypothesis, the sample test statistic is distributed as one-sided

Student t-distribution with n−2 degrees of freedom. Given this test statistics, prediction interval for no-skill

correlation is obtained at 95% confidence level i.e., at 5% level of significance.

While correlation is one way to measure forecast skill of a prediction system. It is sensitive to outliers

and does not take into consideration the full distribution of the forecast. Averaging the ensemble members

to obtain one-point forecast leads to loss in data, which can otherwise provide useful insight of the prediction

quality. Hence, to account for the full distribution of the ensemble forecasts, CRPSS and FCRPSS quality

measures are also computed. These methodologies are detailed in the following sections.
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2.2.2 Continuous Ranked Probability Skill Score (CRPSS)

Since the temperature and precipitation forecasts take values on a continuous scale and come in a form

of ensemble forecast, Continuous Ranked Probability Score (CRPS) is an appropriate skill metric for the

assessment of these forecasts [41]. To compute CRPS, ensemble forecasts are first converted into probabilistic

forecasts through a probability distribution. A probability distribution is a rule or a function that assigns a

specific probability to all the possible values of an ensemble forecast.

CRPS takes the full distribution obtained from the ensemble members and compares it with that of

the observation. For a specific value observed, the corresponding cumulative distribution function (CDF)

is a step-wise function (also known as Heaviside), where the transition from step 0 to 1 occurs at the step

corresponding to the observed value. Each ensemble member forecasts lie on a continuous range of the steps.

The CRPS is the total area between the CDF of the forecast and the CDF of the observation (Fig 9). The

general expression of CRPS of a forecast is given by:

CRPS =
1

N

∫ ∞
−∞

(
F f
t (x)− F o

t (x)

)2

dx

where F f
t (x) and F o

t (x) are CDFs for tth forecast and observation, respectively.

Figure 9: (a) The probability distribution function (pdf) of ensemble mem-

ber forecasts (red) and of observation (black). (b) The cumulative distri-

bution function (CDF) of ensemble member forecasts (red) and of observa-

tion (black). CRPS is the total area between the two CDFs, adapted from:

http://www.eumetcal.org/

To calculate CRPS, I take the set of

m = 51 ensemble members {1, 2, ...M},

each with n = 21 ensemble forecasts

{1, 2, ...N} from 1992 to 2012. Let x̂t,(i)

denote the ith ensemble member of the

tth forecast with m ensemble members

being sorted in ascending order (bracket

around subscript index i indicate order

statistics). Further, let x̂t,(0) = -∞ and

x̂t,(m+1) = ∞ (for easier interpretation

of continuous scale). Then, given equal

probability assigned to each of the en-

semble members, the CRPS for each grid

point is computed as:

CRPS =
1

n

n∑
t=1

[
m∑
i=1

αt,i

(
i

m

)2

+
m−1∑
i=0

βt,i

(
1− i

m

)2
]

(3)
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where steps are defined as;

αt,i =


0 if xt 6 x̂t,(i)

xt − x̂t,(i) if x̂t,(i) 6 xt 6 x̂t,(i+1)

x̂t,(i+1) − x̂t,(i) if x̂t,(i+1) 6 xt


and

βt,i =


x̂t,(i+1) − x̂t,(i) if xt 6 x̂t,(i)

x̂t,(i+1) − xt if x̂t,(i) 6 xt 6 x̂t,(i+1)

0 if x̂t,(i+1) 6 xt



Although CRPS does not require reduction of the ensemble forecasts to discrete probabilities of cate-

gorical events [41], it is computed discretely because observations and forecast distributions are recorded on

discrete intervals. Thus, in this case CRPS is equal to the Mean Absolute Error (MAE) and has a clear

interpretation. CRPS has a negative orientation as it rewards concentration of probability around the step

function located at the observed value i.e. the intersection point of the two CDFs (Fig 9). This is because

such probability distribution of forecasts will have smaller integrated squared distance from the observation.

Finally, once the CRPS is computed, the skill score of CRPSS is computed using the standard skill score

formula (Equation 1):

CRPSS =
CRPSf − CRPSclim

CRPSperf − CRPSclim

where CRPSf , CRPSclim and CRPSperf stand for CRPS of forecast of interest, CRPS of reference clima-

tology and CRPS of perfect forecast, respectively. The range is -∞ to 1. Note that perfect CRPS score is 0

due to its negative orientation.

Despite its advantage of applicability on continuous ensemble forecasts, CRPSS also has drawbacks.

While it measures the reliability attribute of a set of ensembles, it does not award individual ensemble.

Recall the description of ensemble forecasts from Section 1.3. Ensembles are intended to be simple random

samples of the same distribution as the observation. Thus, a scoring rule that favors ensembles that behave

as if they were drawn from the same distribution as the observation is desirable [42]. However, since CRPS
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verifies the ensemble probability forecast, random sample ensembles may not actually appear optimal based

on CRPS [43]. This suggests that the CRPS is sensitive to the average ensemble spread including the

frequency and magnitude of the outliers [41]. In this regard, Fricker et al. [44] introduced the concept of

Fair CRPS that rewards ensemble with members that behave as if they were randomly drawn from the same

distribution as the observation. In the next section, I discuss the Fair CRPS further.

2.2.3 Fair Continuous Ranked Probability Skilled Score (FCRPS)

A scoring rule is not fair if the score can be increased by forecasting what is not the forecaster’s true

belief. For example; as in the case of Finely’s tornado forecast (Section 1.3). For probability forecasts,

a proper scoring rule is fair when it is interpreted as the forecaster’s belief [44]. So, if the expectation

of the scoring rule s(p, x), is taken with respect to any true probability distribution, q, for the verifying

observation, x, the score is optimized when p = q. Thus, if q represents a forecaster’s true belief about

x, then the forecaster cannot do better (on average) by issuing a forecast that is other than q [40]. For

ensemble forecasts, it is more complicated. Fair scoring rule (FSR) for ensemble is one that elicits random

samples of forecasts. However, no such scoring rules exists [44] because expectation of a scoring rule, s(x̂, x),

with respect to any distribution, q, for the verifying observation, x, is a deterministic function of ensemble,

x̂. This means optimizing values can always be determined and issued as the forecast instead of issuing a

random sample [43].

This raises a question about how we should verify an ensemble? Ferro [43] suggests that ensemble should

be verified according to its intended use. So, if probability distribution based on the empirical distribution of

the forecast is used then we must verify the empirical distribution with a proper score, such as CRPS. If we

want to use ensemble mean as the forecast, then we should verify squared error based on the ensemble mean.

To verify whether the ensemble are random samples of the same distribution as the observation, Fricker et

al. [44] suggests a FSR such that the expected value of the score is over all possible ensembles.

Given that an ensemble, x̂, is a random sample from a probability distribution, p, the expectation of

the scoring rule, s(x̂, x), with respect to both p and any distribution, q, for the verifying observation, x, is

optimized when p = q. The scoring rule is strictly fair if its expectation is uniquely optimized when p = q

(Fricker et al. 2013). Thus, choosing p such that it issues random samples from a support-subset of X̂ will

optimize the expectation with respect to both p and q. If the support-subset of q is a subset of X̂, then any

distribution, p, with support equal to that of q will optimize the expected score [43]. In other words, the

expected value of the score is optimized over all possible ensembles.

To see this applied in our data, where the m ensemble members and the observation x, can take any value

on a real line, let p denote the probability density function (PDF) for the ensemble distribution and q denote

the PDF for the distribution of the observation, x. Furthermore, let xt = 1(x ≤ t) and x̂t = (x̂t,1, ..., x̂t,m),
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where x̂t,i = 1(x̂i ≤ t), represent the step-function verifying the observation and ensemble forecast based

on the outcome of the event {x ≤ t} for a threshold, t. For each t, let the scoring rule, st(x̂t, xt), be fair,

negatively oriented and also bounded for all x̂, xt and t. Then, FSR can be obtained as:

FCRPS = s(x̂, x) =

∫ ∞
−∞

{i(t)
m
− j(t)

n

}2

dt−
∑

i 6=j |xi − xj|
2m2(m− 1)

where i(t) members and j(t) are verifications that predict the event {y ≤ t}.

Hence, FCRPS effectively evaluates the underlying ensemble distribution and not just the empirical

distribution as in the case of CRPS. FCRPSS is computed using the same skill score formula (Equation 1):

FCRPSS =
FCRPSf − FCRPSclim

FCRPSperf − FCRPSclim

where FCRPSf , FCRPSclim and FCRPSperf stand for FCRPS of forecast of interest, FCRPS of reference

climatology and FCRPS of perfect forecast, respectively. It is interpreted similar to CRPSS.
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3 Results

3.1 Correlation

The standard procedure of forecast verification for temperature and rainfall is to compute correlation

between forecast and the observations obtained for the same time period of 1992 - 2012. It is used to quantify

the maximum skill that can be obtained in a particular region given a forecast system. For the evaluation

of this technique, temporal correlation was computed for the European region specified as 20o W to 70o E

and 25o N to 75o N over the 21 years. Seasonal temperature and precipitation forecast for each model was

obtained by averaging over all ensemble members and over three months, JJA (initialized on 1st of May)

and DJF (initialized on 1st of November). Multi-model forecast was obtained by averaging the forecasts of

the four models. Correlation was computed on these seasonal datasets for each grid point. Figure 10, 11 and

12 (following pages) present the result of correlation analysis. The correlation maps can be interpreted as:

• Areas covered in red are indicative of positive relationship and suggest better skill compared to clima-

tology.

• Areas covered in blue indicate worse skill than climatology.

• Based on one-tailed Student t-distribution test, forecasts for both temperature and precipitation are

considered statistically significant if they lie in the prediction interval of 95% confidence. These areas

are represented by a dot on each grid point.

• The data over sea is masked, which are the white areas on the maps.
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Correlation Skill for Winter Season

Figure 10: Seasonal (DJF) temporal correlation for European region between 1992-2012. The four maps on the top and the

bottom correspond to seasonal temperature and precipitation, respectively. Red indicates positive correlation and blue indicates

negative correlation. Dots mark the areas where the skill is significant at 95% confidence level.

Based on the maps in Figure 10, the forecast skill for both seasonal temperature and precipitation for

winter is limited in Europe. The skill is the South-Eastern region mostly. The seasonal precipitation skill

is much lower and sporadic compared to seasonal temperature. This is because given its high variability,

precipitation is hard to observe and to forecast. The skill is mostly in Glosea5 and ECMWF.

It is interesting to note that the area where the models are skillful do not overlap very much. This

suggests that the mechanisms leading to the skill in forecast might vary from one model to another. The

overall lack of significance in the correlation in the western region of Europe could be because of the low

predictability of NAO. However, caution must be exercised in the interpretation of these results as the

seasonal data is only based on the years 1992 - 2012.
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Correlation Skill for Summer Season

Figure 11: Seasonal(JJA) temporal correlation for European region between 1992-2012. The four maps on the top and the

bottom correspond to seasonal temperature and precipitation, respectively. Red indicates positive correlation and blue indicates

negative correlation. Dots mark the areas where the skill is significant at 95% confidence level.

Compared to the winter season, the skill for summer temperature in Europe is higher. ECMWF forecast

system has highest positive and significant skill at 95% confidence level for summer seasonal temperature,

covering most of the central and southern Europe (Fig 11). Glosea5 forecasting system also has significant

and positive skill over south of Europe. MF has higher skill in the South-Western region compared to the rest

of the Europe. Finally, the skill for seasonal precipitation in summer is more sporadic and lower compared

to winter.
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Correlation Skill by Multi-Model Forecasting System

Figure 12: Seasonal temporal correlation for European region between 1992-2012 for multi-model forecast system consisting of

Glosea5, ECMWF, NCEP and MF. The top two maps correspond to winter(DJF) and summer(JJA) seasonal temperature and

the bottom are seasonal precipitation for winter(DJF) and summer(JJA). Red indicates positive correlation and blue indicates

negative correlation. Dots mark the areas where the skill is significant at 95% confidence level.

Next, I take a multi-model approach to assess the skill of seasonal temperature and precipitation over

Europe. The average of ensemble forecasts from all four model was computed to obtain a single forecast per

grid point and the correlation was computed on this new multi-model forecasts. The results in Figure 12

show significant skill for predicting summer temperature over large area. However, some skill exhibited by

Glosea5 and ECMWF individually in the western and eastern Europe are not exhibited by the multi-model

forecast (MMF) system. There does not seem to be a noticeable improvement on the skill of MMF system

for seasonal precipitation but this is consistent throughout the individual models.
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Correlation Skill by Model and Location

Figure 13: Model with maximum temporal correlation between 1992-2012 over various geographical regions in Europe. Com-

peting models are Glosea5 (red), ECMWF(orange), NCEP(green) and MF(blue). The top two maps correspond to winter(DJF)

and summer(JJA) seasonal temperature and the bottom are for winter(DJF) and summer(JJA) seasonal precipitation. Dots

mark the areas where the skill is significant at 95% confidence level.

The final analysis based on correlation is aimed at identifying which model has highest skill for seasonal

temperature and precipitation over various geographic regions in Europe (Fig. 12). The four colors in the

map correspond to the four forecasting systems; Glosea5 (red), ECMWF (orange), NCEP (green) and MF

(blue). Out of the correlation computed for each individual forecasting system, the maximum correlation

among them was computed for each grid point. Then, each grid point was assigned to the model that had

highest correlation among the four.

The skill for seasonal winter temperature seems to be more or less evenly divided among the four models

(Fig. 13). ECMWF is the best performing forecast system for summer season. For winter season, the four

model have best performance in different regions over Europe. The correlation skill among the four models

for seasonal precipitation is scattered throughout Europe. ECMWF performs best in the eastern region for

winter season. NCEP forecasts exhibit best skill in comparatively few locations.
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3.2 Continuous Ranked Probability Skill Score (CRPSS)

CRPSS is a skill score based on the CRPS. It is a better measure of relationship between ensemble

forecast and observation because it takes into account the full probability distribution obtained from the

ensemble members and compares it with the verifying observation. It can also be interpreted as probabilistic

generalization of the mean absolute error.

• CRPSS evaluates the percentage of forecasts that are more skillful than the reference forecast, clima-

tology. For example, a value of CRPSS=0.2 indicates that the probabilistic forecast error is 20% less

than the climatological forecast error.

• Negative values (in blue) imply that the skill of estimated forecast probabilities is worse than the use

of climatological frequencies as forecast.

• Positive values of CRPSS (in red) indicate that the model is better than climatological probabilities.

• White areas on land surface represents scores that are lower than -1 showing particularly worse rela-

tionship between the ensemble distribution and the observation. The data over sea is masked and also

represents white areas on the maps.
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CRPS Skill for Winter Season

Figure 14: CRPSS for seasonal (DJF) temperature(top) and precipitation(bottom) between 1992-2012 in the European region.

Red indicates skill higher than climatology and blue indicates worse skill than climatology. Dots mark the areas where the skill

is significant at 95% confidence level.

The result of CRPSS on the assessment of seasonal temperature and precipitation forecast over Europe

for winter show very limited correspondence between the probability distribution of ensemble members and

the verifying observations. There is some positive and significant skill in ECMWF, which is limited to the

south of Europe by the Mediterranean coast (Fig.14). The CRPSS skill for precipitation remains very low.
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CRPS Skill for Summer Season

Figure 15: CRPSS for seasonal (JJA) temperature(top) and precipitation(bottom) between 1992-2012 in the European region.

Red indicates skill higher than climatology and blue indicates worse skill than climatology. Dots mark the areas where the skill

is significant at 95% confidence level.

Consistent with the case of correlation, CRPSS for summer is better compared to that of winter. This

suggests that seasonal temperature predictability is higher for summer than for winter season in general.

ECMWF has positive significant skill over central Europe (Figure 15). Some positive significant skill is also

in Glosea5 in the South of Mediterranean.

None of the models exhibit significant skill for seasonal precipitation within Europe. Some positive skill

is gained but very sporadically in just a few regions.
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CRPS Skill by Multi-Model Forecasting System

Figure 16: CRPSS for multi-model forecast system consisting of Glosea5, ECMWF, NCEP and MF for seasonal tempera-

ture(top) and precipitation(bottom) between 1992-2012 in Europe. Maps on left correspond to winter(DJF) season and to right

correspond to summer(JJA). Red indicates better skill than climatology and blue indicates worse skill than climatology. Dots

mark the areas where the skill is significant at 95% confidence level.

Finally, I compute CRPSS for MMF consisting of the four models to explore if they out-perform the

individual forecast systems. As seen in Figure 16, the result is consistent as in the case of correlation where

MMF has improved skill is central Europe. However, MMF skill decreased in some other areas such as

Scandinavia.

As mentioned in the earlier sections, CRPS is not a fair scoring rule as it is sensitive to average ensemble

spread including the frequency and magnitude of the outliers. When ensemble forecasts are compared with

each other, the ensemble size affects the forecast skill. Note that ECMWF, which performs best on this skill

measure compared to the rest of the model, has the highest number of ensemble, 51. On the other hand,

MF which has lowest performance on this measure only has 15 members. Glosea5 and NCEP both have 24

ensemble members. In the next section, I discuss the results of FCRPS which adjusts these drawbacks of

CRPS to some extent.
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3.3 Fair Continuous Ranked Probability Skill Score (FCRPSS)

I computed FCRPSS for all four models as a fairer measure of scoring rule. FCRPSS is a skill score that

measures whether the ensemble members are random samples of the same distribution as the observation.

The interpretation of FCRPSS is similar to CRPSS.

The adjustment made by FCRPSS, lowered the skill for ECMWF suggesting the skill in CRPSS was

driven in part due to the high number of ensemble members. The skill comparison of CRPSS (Fig. 14) and

FCRPSS (Fig. 17) show only slight change in skill. The change is due to adjustments based on number of

ensemble and its spread. The adjustment is particularly notable for ECMWF. Note that the significance

of skill in the northern region of Caspian sea remains for ECMWF for the summer season even after the

adjustment (Fig. 15 and Fig. 18). MMF performance (Fig. 16 is consistent with correlation skill and

CRPSS. It is better in some areas but not in some other areas. The seasonal precipitation over Europe

for winter and summer has low skill and this has been consistent throughout the analyses using all three

methods.
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FCRPS Skill for Winter and Summer Season

Figure 17: Same as for (Fig.14) but for FCRPSS values.

Figure 18: Same as for (Fig.15) but for FCRPSS values.
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FCRPS Skill for Multi-Model Forecasting System

Figure 19: Same as for (Fig.16) but for FCRPSS values.
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4 Conclusion

The goal of this thesis is to assess the seasonal temperature and precipitation forecasts provided by EU-

ROSIP against observations dataset of temperature (ERA-Interim) and precipitation (GPCP) over Europe.

SCFs are forecasts of climatic events at timescales of few weeks up to a few months. SCFs are currently

underutilized in Europe, mostly due to limited predictability in the European region. In this thesis, however,

I have shown that the potential for SCF exists and is particularly high during summer season in the central

and southern regions of Europe.

In this thesis, I have highlighted the value of SCFs, which exists in various sectors ranging from agri-

culture, hydrology and insurance. There is a high potential of SCFs in aiding our decision making processes

to be better prepared for the future. Furthermore, I have also highlighted the need for seasonal forecast ver-

ification. Due to the inherent uncertainties that exists in the atmospheric conditions of the Earth’s climate

system as well as due to the complexity of accurately depicting these conditions in the dynamical models,

prediction are often penalized. Research and development in the scientific community has led to improve-

ments in the forecasting technique. Ensemble is one such technique, the forecasts of which, I assessed in this

thesis to determine the skill over the European region. Ensemble generation and modelling represents the

“true” atmospheric state more accurately and accounts for some of these inherent uncertainties.

I used temporal correlation coefficient, CRPSS and FCRPSS as measures to assess the skill of SCFs.

Correlation quantifies the maximum skill that can be obtained given the forecasts and observations. CRPSS

measures the quality of ensemble by taking the full distribution of ensemble into account. However, it

is sensitive to the number of ensemble members and its spread. Thus, CRPS favors the ensemble that

has distributions similar to the distribution of the observations. FCRPS is a fairer scoring rule compared

to CRPS. Unlike CRPS, FCRPS measures the underlying distribution of the ensembles and not just the

empirical distribution. FCRPS assess whether the ensemble behave as a random sample generated from the

same distribution as that of the observation. Thus, FCRPS measures how well each ensemble perform based

on the observation.

The results of the assessment based on all three measures show that the skill for forecasting seasonal

temperature exists in Europe. The skill is particularly notable for ECMWF, which remains even after

adjustments over the number of ensemble members. Glosea5, NCEP and MF, all exhibit skill in different areas

throughout Europe. Therefore, it is recommended to choose the forecast model based on the geographical

area where they perform best. However, the skill for seasonal precipitation is particularly low. This is

because in general precipitation is hard to observe and to forecast due to its high variability.

MMF assessment showed that multi-model system performs better in some areas but not throughout

Europe. This is because the construction of multi-model is based on the average of the four models and
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therefore is affected by the low skill of one or more of these models in a particular area. Hence, it would

be interesting to observe the results of a weighted multi-model, which puts higher weight to the particular

model that performs best in each grid point. After making for such adjustments, similar assessment using

the three measures can be performed to see if multi-model can result in improved skill. This can be an area

for further research.

Finally, significantly high correlation but fairly low CRPSS skill indicates that although the skill to

predict the seasonal temperature and precipitation over Europe is high in many regions, predicting the full

distribution of the seasonal temperature and precipitation is still a challenge. This requires re-calibration of

the models to reduce the negative skill. However, more robust assessment of the sources of predictability is

also required to better understand the atmospheric phenomena that contribute to seasonal climate anomalies.

To conclude, while statistical methodologies can aid in climate forecast verification process, the key remains

in our ability to understand and represent underlying physical processes more accurately.
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