The High Performance Scheduler Game: A Characterization of Slurm, Metrics, and the Viability of Cooperation

Wilmer V. Uruchi Ticona

Universitat Politècnica de Catalunya

2020

1 Introduction

- 2 Main Concepts
- 3 Project Development
- 4 Conclusions and Future Work

- B - - B

- **Slurm** is one of the most widely used **management platforms** for *High Performance Computing* clusters around the world.
- The *users* of these **HPC** platforms are usually involved in **complex projects** of key importance for different areas of **human development**.
- By studying it, we hope to indirectly help those **groups of scientists** that make use of the **HPC** platforms managed by *Slurm*.

- The main objective of this study is to analyze whether Algorithmic Game Theory and specifically Mechanism Design tools can be used to build a model that captures key characteristics of the *Slurm* Scheduler.
- Produce a model that implements some desired guarantees, an ideal model, so we can achieve optimal results that can be compared to variations of the model, and the results of a proper Slurm Simulator¹.
- We try to get a glimpse at the **Price of Anarchy** of the *Slurm* Scheduler, which is the ratio between the **worst** *possible* outcome and the **best** *possible* outcome. We argue about the **Viability of Cooperation**.

¹Ana Jokanovic, Marco D'Amico, Julita Corbalan. Evaluating SLURM Simulator with Real-Machine SLURM and Vice Versa. *Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS18)*

Secondary Objectives

- Help *Slurm* developers to get more **ideas** into which way to take the **improvement** of their platform.
- Provide to the **users** of the HPC platforms that implement *Slurm* a **description** of what is happening **behind the scheduling process**, so they can implement **strategies** of their own.
- Present an **intuitive** explanation of **Mechanism Design** concepts by testing them in an **experimental** setting.
- Perform an in-depth analysis of the data generated by **Autosubmit**, a **workflow manager** used by the *Earth Science Department* at *BSC-CNS*.
- Implement the models and provide the source code to reproduce the results.
- Provide a description of the setup process of the **Slurm Simulator**.

< □ > < □ > < □ > < □ > < □ > < □ >

- 3 Project Development
- 4 Conclusions and Future Work

- *Slurm* is an open source, fault-tolerant, and highly scalable **cluster management system** for large and small Linux clusters.
- In *MareNostrum4*, there are around 3456 nodes, each node has 2 sockets, each socket has 24 cores or *CPUs*.
- The *Slurm* scheduling mechanism has two main components: **Priority** and **Scheduler**.

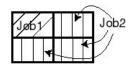
A value calculated based on **data** from the **user**, and the **jobs** that the user sends to the High Performance Computer (HPC). The calculation tries to give **higher priority** to those users that have **less usage**.

- Age: The longer a job sits in the queue and is eligible to run, the bigger this value gets.
- Size: This value is determined by the number of processors (CPUs) a job requests. We consider nodes.
- Fair-share: Determined by an algorithm that takes as input the number of users and the representation of the user hierarchy. Considers Usage.
- Quality of Service QoS: Represents a set of rules that apply to the jobs sent using it.

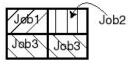
- The **Scheduler** runs in interval of 60 seconds.
- Considers the order imposed by the **Priority** value of each job.
- Favors resource and time optimization to decide which job is executed next.
- Uses **backfill mode**, where the scheduler will start lower priority jobs if that does not delay the start of higher priority jobs.

Backfill Scheduling

(a) Job1 started at 8:00 am. Will finish at 10:00 am.



(b) Job2, submitted but can't start since it needs 4 processors. Remaining 3 reserved by Job2.



(c) At 8:30 am Job3 submitted. Job3 backfills Job2.

(d) At 10:00 am, Job2 starts.

Figure: Backfill Scheduling. Image taken from IBM Knowledge Center.

4 3 4 3 4 3 4

Slurm receives **jobs** that come from **experiments**. A typical experiment can be seen as a **Directed Acyclic Graph**, it starts with jobs that retrieve or send information, followed by more complex jobs.

- A workflow manager for experiments.
- Implemented as a *Python* library that handles authentication, job submit, retrieval of job results, etc.
- Stores the time a job was **submitted**, **started**, **finished**, and the **resources** requested.

Data Analysis Summary

We start by obtaining and analyzing the data at an experiment level. After identifying the useful experiments, we proceed to analyze the data at a **job level**. Then, we clean the job data to finally obtain our datasource.

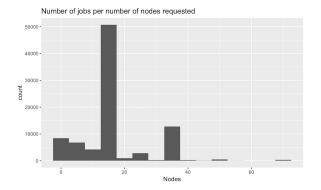


Figure: Number of jobs per nodes requested. binwidth = 5.

The **Algorithmic Game Theory** approach gives us an **economic** perspective that we can use to understand the effect of **user interaction** and **selfish behavior** into a model where **users compete** for **limited resources**.

The inclusion of **Mechanism Design** is key to this objective because this field gives us the **tools** to **design** an **ideal** mechanism that can produce an optimal result and the tools to **analyze** of it.

- Game: A set of circumstances that has a result dependent on the actions of players.
- **Strategy**: *One of the options* which the player can choose. It can be **deterministic (pure)** or **probabilistic (mixed)**.
- **One-shot Simultaneous Move Game**: The individual reward depends on this join selection.
- **Dominant Strategy**: Any other option would just mean, in the best case, **an equal utility**. A game has a **dominant strategy solution** if all players have a **dominant strategy**. *Few games have a dominant strategy solution*.

- Social Welfare: The aggregation of the players values.
- Mixed Nash Equilibrium: A stable solution, so that any player cannot deviate individually and obtain a higher benefit.
- The Price of Anarchy: Defined as the ratio between the worst value of the social objective function of an equilibrium and the optimal value of the same social objective function.

The science of **rule-making**. This sub-field of economic theory, which has an **engineering perspective**, is interested in designing mechanisms that achieve a **socially desirable outcome**, or a desirable **property defined by the designer**.

We use **Mechanism Design** to produce an **ideal model** against which we can **compare variants** of it and the results from the **Slurm Simulator**.

Auction: A mechanism that **allocates** items and defines **payments**. These decisions are formalized as an **allocation rule** to define **who receives what**, and a **payment rule** that defines **how much the winning players have to pay** to the mechanism.

Vickrey Auction: Second Price Auction, the single item is awarded to the highest bidder, and pays an amount equal to the second highest bid. The dominant strategy is to bid truthfully (bid = value), even without knowing what other players bid.

Direct-revelation mechanism: players reveal their private information to the mechanism. **Dominant strategy** is to bid truthfully.

We are looking for an ideal auction (model) that has these properties:

- Strong incentive guarantees: Truthful bidding is a dominant strategy and never leads to negative utility. We refer to mechanisms that comply with this guarantee as *Dominant Strategy Incentive Compatible* (DSIC).
- **Strong performance guarantees: Social Welfare** maximization, the bidder with the highest value gets the item, assuming truthful bids.
- **Computationally efficient:** The **allocation** and **payments** can be computed in polynomial time (or even linear) as a **function of the bids**.

Each task has a publicly known size w_i and a privately known valuation. The system has capacity W. The **feasible set** X is the 0-1 *n*-vector $(x_1, x_2, ..., x_n)$ such that, $\sum_i w_i x_i \leq W$, where $x_i = 1$ if i is a winning bidder. Allocation rule:

$$\mathbf{x}(\mathbf{b}) = argmax_X \sum_{i=1}^n b_i x_i$$

Define a **payment rule** that extends the **allocation rule** to *DSIC*: Players **pay** the **marginal harm** their bid causes; the payment can be **as high as their original bid** (VCG payments)². **Not computationally efficient** in general, but we can use an **approximation**.

²Generalization of Vickrey Auction.

³Mu'Alem, A. and Nisan, N. (2008). Truthful approximation algorithms for restricted combinatorial auctions. *Games and Economic Behavior*, 64(2):612-631.

Consider a bid profile **b** and a set of winners *I* with total size $\sum_{i \in I} w_i \leq W$. For all $i \in I$, we have that $w_i \leq W$. Then we follow the steps:

Sort and re-index the bidders so that:

$$\frac{b_1}{w_1} \geq \frac{b_2}{w_2} \geq \cdots \geq \frac{b_n}{w_n}$$

- **2** Pick items in that order until **one does not fit and halt**.
- Return the solution from the previous step or the highest bidder, whichever has largest social welfare.

Social Welfare achieved by the greedy algorithm is **at least** 50% of the maximum **Social Welfare**. Better results if $w_i \leq \beta \cdot W$ for every player *i* and $\beta \in (0, \frac{1}{2}]$. Then, the approximation guarantee increases to $1 - \beta$.

Knapsack Auction Model

- Measure performance as the maximization of an objective function: Total Value (Social Welfare) achieved by the scheduler, which is the sum of the values each user has for the execution of her job.
- **Player** *i* submits job *i* that has a known size *w_i* representing the **number of nodes** required, and *t_i* representing the **minutes** required to finish execution (**planned running time**).
- Considering w_i and t_i , player *i* has a **privately known value** v_i . The values v_i of each player are represented by their **reported bids** $b_1, b_2, ..., b_n$. The **dominant strategy** is to bid **truthfully**, $b_i = v_i$.
- The allocation rule maximizes Social Welfare, and it is computationally efficient by using the Knapsack Greedy Algorithm.
- The **payment rule** uses **VCG payments** to ensure a *DSIC* mechanism.

For Knapsack Greedy Algorithm, keep going until a job that fits the remaining capacity is found or end of list. This breaks DSIC. Is Social Welfare no longer maximized?

If we base our **allocation rule** in a randomly generated **Priority** value, then, our **payment rule does not make sense anymore**. What happens to **Social Welfare**? For experimentation purposes, we will choose jobs uniformly at **random** from the datasource until they sum no less than **6912 nodes**.

- W: Total number of nodes in the HPC (3456).
- **2** *n* : **Number of players** (jobs).
- **(3)** w_i : Weight of job *i* measured in nodes.
- b_i : **Bid (Value)** of player *i* for job *i*.
- **5** p_i : **Payment** of player *i* for job *i*.
- $x_i : 1$ if job *i* is **selected** into the knapsack, 0 otherwise.
- *min_i* : Planned time in minutes that player *i* considers job *i* will take in the worst case.
- In time_i: Time in minutes that player *i* considers job *i* will take. Previous experience running similar jobs gives player *i* a better idea of how much time the job will really take, so min_i ≥ rtime_i.

- **1 Total Value**: The sum of the bids of all selected players, also known as the **Social Welfare**, $\mathbf{TV} = \sum_{i}^{n} b_{i} \cdot x_{i}$.
- **2** Total Sum of Payments: The sum of the calculated payments for all selected players, $\mathbf{TP} = \sum_{i=1}^{n} p_i \cdot x_i$.
- Solution (2) S
- Same Payment Count: Number of players that would pay the same amount as their bid, SP = |{i : x_i ≥ 1 ∧ p_i = b_i}|

In **Experiment 1A** we take $b_i = w_i \cdot min_i$. Then, we evaluate the results using a solver that finds the optimal **Total Value**.

In **Experiment 1B** we follow the same formula for b_i used in **Experiment 1A**; however, instead of using an optimal solver, we use the *Knapsack Greedy Algorithm*.

In **Experiment 3B** we take $b_i = w_i \cdot min_i$ to represent an *inexperienced* player. Then, the greedy algorithm uses $\frac{b_i}{w_i \cdot rtime_i}$. In **Experiment 2B** we take $b_i = (w_i \cdot rtime_i) + (w_i \cdot rtime_i) \cdot 0.1$. Then, the greedy algorithm uses $\frac{b_i}{w_i \cdot rtime_i}$. In **Experiment 4B**, we take $b_i = (w_i \cdot rtime_i) + (w_i \cdot rtime_i) \cdot 0.1$. Then, the greedy algorithm uses $\frac{b_i}{w_i}$, as originally defined.

Results: Main Experimentation

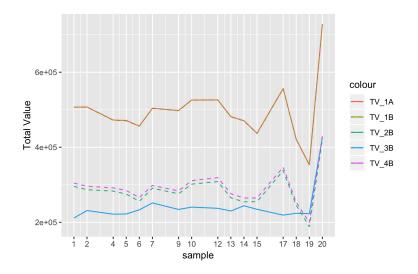


Figure: Total Value (Social Welfare) for sample and experiment.

< □ > < 凸

	sample	TV_1A	TV_1B	TV_3B	TV_2B	TV_4B
1	sample_1.txt	506930	506850	211480	295615	304239
2	sample_2.txt	507305	506785	231310	286779	296064
3	sample_4.txt	472530	472170	221610	283158	291715
4	sample_5.txt	471440	470480	222105	275120	284591
5	sample_6.txt	456315	456275	233180	255977	265832
6	sample_7.txt	504035	503595	251495	290940	298085
7	sample_9.txt	497850	497410	234255	275866	283595
8	sample_10.txt	525810	525450	240445	301627	310999
9	sample_12.txt	526210	525930	237285	308551	318843
10	sample_13.txt	481620	481300	230075	265248	276205
16	sample_20.txt	728540	728540	426377	421757	430275

Table: Total Value per sample and experiment.

	sample	TP_1A	TP_1B	TP_3B	TP_2B	TP_4B
1	sample_1.txt	138240	122320	118400	62792	64796
2	sample_2.txt	138240	118400	119700	60788	63460
3	sample_4.txt	138240	119680	115840	63794	63794
4	sample_5.txt	138240	12640	114680	60120	62792
5	sample_6.txt	138240	113280	113920	60454	62124
6	sample_7.txt	138240	118400	113380	61122	63126
7	sample_9.txt	138240	117760	456960	61456	62792
8	sample_10.txt	138240	117760	117120	59786	62458
9	sample_12.txt	138240	112000	106880	58784	60454
10	sample_13.txt	138240	117760	113920	60454	63126
16	sample_20.txt	207360	171840	8778	2465	30496

Table: Total Payments per sample and experiment.

Results: Main Experimentation

	sample	PM_1A	PM_1B	PM_3B	PM_2B	PM_4B
1	sample_1.txt	0	0	4	5	0
2	sample_2.txt	0	0	6	10	0
3	sample_4.txt	0	0	4	8	0
4	sample_5.txt	0	0	5	9	0
5	sample_6.txt	0	0	7	10	0
6	sample_7.txt	0	0	5	5	0
7	sample_9.txt	0	0	194	6	0
8	sample_10.txt	0	0	2	10	0
9	sample_12.txt	0	0	2	6	0
10	sample_13.txt	0	0	5	8	0
16	sample_20.txt	0	0	0	0	0

Table: Number of players that will pay more than their bid per sample and experiment.

글 🕨 🖌 글

Results: Main Experimentation

	sample	SP_1A	SP_1B	SP_3B	TV_2B	SP_4B
1	sample_1.txt	82	74	121	75	92
2	sample_2.txt	75	65	111	64	85
3	sample_4.txt	61	54	117	62	70
4	sample_5.txt	69	1	118	52	74
5	sample_6.txt	58	53	101	48	68
6	sample_7.txt	68	56	109	68	79
7	sample_9.txt	72	65	1	56	67
8	sample_10.txt	65	58	122	41	61
9	sample_12.txt	63	53	108	56	71
10	sample_13.txt	59	50	105	53	66
16	sample_20.txt	22	13	22	1	2

Table: Number of players that will pay their bid per sample and experiment. We can ignore the results for experiment **3B** and **2B**.

- **Instead of stopping** when a job that does not fit is found, the greedy algorithm continues until it **fills the capacity** of the Knapsack or reaches the end of the list.
- We define **1B1** and **4B1** as the experiments **1B** and **4B** from **Main Experimentation**, respectively.

Results: Knapsack Auction Modified

	sample	TV_1B	TV_1B1	TV_4B	TV_4B1
1	sample_1.txt	506910	506850	304308	304239
2	sample_2.txt	507265	506785	296247	296064
3	sample_4.txt	472530	472170	291784	291715
4	sample_5.txt	471415	470480	284609	284591
5	sample_6.txt	456275	456275	265996	265832
6	sample_7.txt	504015	503595	298241	298085
7	sample_9.txt	497830	497410	283663	283595
8	sample_10.txt	525750	525450	311160	310999
9	sample_12.txt	526125	525930	318944	318843
10	sample_13.txt	481600	481300	276205	276205
16	sample_20.txt	728540	728540	430354	430275

Table: Total Value compared between the Knapsack Greedy Algorithm Modified **TV_1B TV_4B** and **TV_1B1 TV_4B1** from the Knapsack Greedy Algorithm.

Results: Knapsack Auction Modified

	sample	TP_1B	TP_1B1	TP_4B	TP_4B1
1	sample_1.txt	138080	122320	71970	64796
2	sample_2.txt	137240	118400	76399	63460
3	sample_4.txt	135300	119680	72033	63794
4	sample_5.txt	139795	12640	68488	62792
5	sample_6.txt	134340	113280	76356	62124
6	sample_7.txt	138905	118400	73547	63126
7	sample_9.txt	137675	117760	70561	62792
8	sample_10.txt	140525	117760	77461	62458
9	sample_12.txt	142705	112000	71760	60454
10	sample_13.txt	138730	117760	70106	63126
16	sample_20.txt	205935	171840	37386	30496

Table: Total Payment compared between the modified version $TP_1B\ TP_4B$ and the original version $TP_1B1\ TP_4B1$

Results: Knapsack Auction Modified

	sample	PM_1B	PM_1B1	PM_4B	PM_4B1
1	sample_1.txt	2	0	0	0
2	sample_2.txt	3	0	5	0
3	sample_4.txt	0	0	0	0
4	sample_5.txt	71	0	0	0
5	sample_6.t×t	0	0	8	0
6	sample_7.txt	4	0	2	0
7	sample_9.txt	2	0	0	0
8	sample_10.txt	6	0	2	0
9	sample_12.txt	10	0	0	0
10	sample_13.txt	0	0	0	0
16	sample_20.txt	0	0	0	0

Table: Number of players that will pay more than their bid compared between the modified version PM_1B PM_4B and the original version PM_1B1 PM_4B1

.

Use **Priority** to decide which jobs are considered for **resource allocation**. This **Priority** is decided based on the formula: $priority_i = \frac{w_i \cdot 10000}{W} + y$, where *y* is a uniform random variable between 1 and 10000. We apply this formula to **mimic in some way** what the *Slurm* calculation of **Priority** would do. We compare the **Total Value** of the outcome from experiments **1B** and **4B** with previous results.

We define **1B1** and **4B1** as the experiments **1B** and **4B** respectively from **Main Experimentation**.

Results: Knapsack + Priority

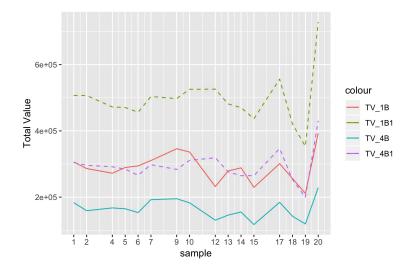


Figure: Total Value per sample and experiment using Priority.

- Use the **Slurm Simulator** to run our samples and produce what would be a real output from the *Slurm* Scheduler.
- Use the formula $v_i = w_i \cdot min_i$ to calculate the value for each job *i* and get a **Total Value** achieved by the resource allocation outcome of the simulator.
- Then, we compare it to the experiments 1B from Main Experimentation that we call 1B1, 1B from Knapsack Auction Modified that we call 1B2, and 1B from Knapsack + Priority that we call 1B3.

Results: Slurm Simulator

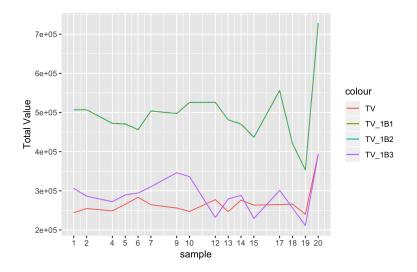


Figure: Total Value per sample and experiment from the *Slurm* Simulator compared to previous results.

Wilmer V. Uruchi Ticona

2020 40 / 48

	sample	Т٧	TV_1B	PoA
1	sample_1.txt	244007	506850	2.08
2	sample_2.txt	254720	506785	1.99
3	sample_4.txt	248748	472170	1.90
4	sample_5.txt	265446	470480	1.77
5	sample_6.txt	283402	456275	1.61
6	sample_7.txt	264376	503595	1.90
7	sample_9.txt	256051	497410	1.94
8	sample_10.txt	247317	525450	2.12
9	sample_12.txt	277427	525930	1.90
10	sample_13.txt	246755	481300	1.95
16	sample_20.txt	394505	728540	1.85

Table: Price of Anarchy based on Total Value of our samples.

(日) (四) (日) (日) (日)

- Through experimentation we have seen that it is possible to achieve a near optimal Total Value for our model in a computationally efficient way.
- We calculated the **Total Value** for the **results of the simulator** based on the *same ideas applied for our near optimal model*.
- We have established a **common ground**, the **Total Value**, that we can use to compare the outcome of our **ideal model** to the outcome of the **simulator**.
- If we average the **PoA** results, we get that $PoA \approx 1.85$. Then, we can say that an ideal outcome of the **Slurm scheduling game** might be around 1.8 **times better** than a **usual** outcome.

What if the dominant strategy was to inevitably **cooperate** to get a **greater utility** or a **lower cost**?

- The Knapsack Auction Model is an ideal game or auction.
- The **dominant strategy** for the players is to bid **truthfully**.
- The mechanism achieves Social Welfare maximization.
- **Telling the truth**, or being forced to tell the truth, is also a form of **cooperation**.
- The **Knapsack Auction Model** imposes the necessary constraints on users to achieve this form of **cooperation**.
- It is not trivial how to translate the desired guarantees achieved by the Knapsack Auction Model to the Slurm Scheduler. The planned running time that the player establishes for her job plays a key role in the scheduling operation.

Introduction

- 2 Main Concepts
- 3 Project Development

- B - - B

- We developed and presented a **detailed study** of the **main factors** that play in the **scheduling process of Slurm**.
- We present a **summary** of some of the main ideas we used for our project from the field of **Mechanism Design**, also including relevant **background** theory from **Algorithmic Game Theory**
- The **payment rule** defined by *VCG payments* together with the **allocation rule** make our model *DSIC*.
- We have designed a model that **captures** some of the most important **characteristics** of the *Slurm* Scheduler.

- Our *ideal* auction, the Knapsack Auction Model, achieves the best results regarding resource allocation in reasonable time, among other desired guarantees.
- From the variants of our model, the Knapsack Greedy Algorithm Modified is the one that best resembles the backfill procedure that attempts to allocate as many available resources as possible.
- We have seen that an allocation rule based on Priority, which attempts to allocate resource in a fair way, achieves a lower Social Welfare than that of a mechanism that implements an allocation rule that gives resources to those who value them the most.

- Experimentation has hinted that the distribution of the jobs that arrive at the scheduler plays an important role in the outcome of the allocation rule. A next step is to pursue more analysis of these distributions to find if some of them favor certain outcomes.
- The inclusion of some kind of **currency** in the calculation of **Priority** by the **Slurm Scheduler** might result in **better guarantees** for achieving a greater **Social Welfare**.
- We have looked at results for players that **pay more** than their bid, or that **pay the same**, but we have not analyzed the results for players that **pay less** than their bid.
- Analyze under which conditions a worst equilibrium might occur.

Thank you.

メロト メポト メヨト メヨト