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Earth System Models for climate change attribution
ESMs can help understand the main drivers of past changes in climate
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ESMs can help understand the main drivers of past changes in climate
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Earth System Models for climate change attribution

External radiative forcers
Observed Global Surface Temperature anomaly (in K)
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Earth System Models for climate change attribution
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changes using only observations because all variables have changed simultaneously

Human Origin

Natural Origin

Human Origin
Which are the most 
important factors?
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Earth System Models for climate change attribution

Observed Global Surface Temperature anomaly (in K)

Human Origin

Natural Origin

Human Origin
Which are the most 
important factors?

It is not possible to unambiguously infer the role of the different drivers on the observed changes 
using only observations because all influences have occurred concommitantly
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Earth System Models for climate change attribution

Natural Forcings only

IPCC – AR5 – Chapter 10

Observed Global Surface Temperature anomaly (in K)
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Earth System Models for climate change attribution

Natural Forcings only

Natural + Anthropogenic Forcings
What other factors 

can explain the 
discrepancies?

Observed Global Surface Temperature anomaly (in K)

IPCC – AR5 – Chapter 10
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ESMs can help understand the main drivers of past changes in climate
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Earth System Models for climate change attribution

Internal Climate Variability
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Earth System Models for climate change attribution

Sea Surface Temperature Anomaly
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El Niño-Southern Oscillation - ENSO
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ESMs can help understand the main drivers of past changes in climate

Earth System Models for climate change attribution

Sea Surface Temperature Anomaly

El Niño La Niña

Atmosphere Ocean

Internal Climate Variability

Some of the year-to-year changes
in global mean temperature can 
be explained by ENSO variability 

El Niño-Southern Oscillation - ENSO
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Ocean

Earth System Models for climate change attribution

La Niña 
Impact on precipitation

Wetter Drier Warmer Cooler

La Niña 
Impact on temperature

Internal Climate Variability

ENSO also has numerous climate impacts 
at the regional scale
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The AMV  can explain some of 
the multidecadal modulations 

In the global mean temperatures

Knight et al. (2005)
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Ocean

Earth System Models for climate change attribution

Internal Climate Variability

Positive AMV
Impact on monsoon systems

Positive AMV
Impact on surface air temperature

Lyu and Yu (2017) Monerie et al (2019)

AMV also has important climate impacts on 
its neighboring continents



ESMs can help understand the main drivers of past changes in climate

Earth System Models for climate change attribution

IPCC – AR5 – Chapter 2
Keil et al (2020)

OBS Historical (MPI-ESM)

1%CO2 (MPI-ESM) 1%CO2 (mixed-layer ocean)

1870-2016 1850-2005

80 years 80 years

Linear trends in Sea Surface Temperature (SST)

Observed Change in Surface Temperature (1901-2012)



ESMs can help understand the main drivers of past changes in climate

Earth System Models for climate change attribution

Observed Change in Surface Temperature (1901-2012)

IPCC – AR5 – Chapter 2

Linear trends in SST following unforced
reductions in Atlantic ocean circulation

Robson et al (2015)

Schematic Atlantic
ocean circulation

Praetorius et al (2018)
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Earth System Models for near-term climate prediction
Fundamentals of climate prediction

CenturiesDays Weeks Decades

Climate projections

Meinshausen et al. (2020)

Months Seasons Years 

Weather forecasts

©European Environment Agency©NASA/SDO ©Ulet Ifansasti Getty Images

©National Research Council

In seasonal to decadal prediction 
both contributions matter !!

Good guess of future changes in the forcing factors
[ BOUNDARY CONDITION PROBLEM ]

Accurate constraint of the current 
meteorological state

[ INITIAL VALUE PROBLEM ]



Earth System Models for near-term climate prediction
Fundamentals of climate prediction

CenturiesDays Weeks Decades

Climate projections

Meinshausen et al. (2020)

Months Seasons Years 

Weather forecasts

©National Research Council

Initialization of internal 
sources of predictability

Global Earth System ModelObservations

In seasonal to decadal prediction 
both contributions matter !!

DATA 
ASSIMILATION



Earth System Models for near-term climate prediction
Internal sources of predictability
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Mariotti et al (2018)
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Weather prediction

Due to the chaotic nature of 
atmospheric variability 

(butterfly effect)

weeks to decadesClimate prediction

ocean sea ice soil moisture

Mariotti et al (2018)
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Internal sources of predictability
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The atmosphere can also provide 
memory beyond a month: 

The Quasi-Biennal Oscillation (QBO)

Equatorial Zonal Wind (m/s)

Through a modulating effect on wave
propagation, the QBO can impact the
polar vortex strength and contribute to
Northern Hemisphere predictability at
seasonal and interannual scales.

Monier & Weare (2011)

©National Research Council

atmosphere

Mariotti et al (2018)
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Internal sources of predictability

atmosphere
(weather)

ocean/sea iceland

~7 days ~30 days Time

Pr
ed

ic
ta

b
ili

ty

©Paul Dirmeyer (GMU/COLA)

AMV Index PDO Index

AMV Pattern PDO Pattern

ocean

The ocean exhibits modes of 
decadal variability both in the 

Atlantic and Pacific basins

Cassou et al,
Technical Note for DCPP-Component C

Mariotti et al (2018)
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Internal sources of predictability
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Re-emergence mechanisms in 
Arctic sea ice provide memory and
thus predictability at annual scales

Blanchard-Wrigglesworth et al (2011)

sea ice

Sea ice area
(centered in September)

Mariotti et al (2018)
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sea ice

according to its limited significance (Fig. 4f) as com-
pared to December–January (Figs. 4b,d). The cross-
validated skill patterns of winter SAT and precipitation,
although showing positive scores over Europe, do not
achieve 95% confidence level using October SIC/BK
(Figs. 5c,e) and only some regions exceed the statisti-
cal threshold using November SIC/BK (Figs. 5d,f).
Note that although there are large areas of significant
linear correlation with the MCA-SIC/BKNOV expan-
sion coefficient (thin colored line), the prediction skill
is limited (thick black line). Nonetheless, this statisti-
cally significant skill of SAT over the central-western
Mediterranean basin and of precipitation over the
Iberian Peninsula represents the first hint that statis-
tical predictions of winter European climate based on
sea ice variability over the Barents–Kara Seas in
middle-to-late autumn could be skillful. These results
from empirical hindcasts support the recent finding

from dynamical hindcasts (Scaife et al. 2014) that sea
ice variability over the eastern Arctic in November
can be regarded as a predictability source for winter
climate conditions in the Euro-Atlantic sector.
On the other hand, October SIC/BK yields statisti-

cally significant skill of SLP over northern Eurasia
(Fig. 5a), which might be related to processes that
are not present in the relationship between November
SIC/BK and the winter NAO (Fig. 5b). Likely associ-
ated with the SLP skill, cross-validated hindcasts using
October SIC/BK also provide some significant skill for
SAT in central Eurasia (Fig. 5c), but not for pre-
cipitation (Fig. 5e). These results are in agreement
with Mori et al. (2014), who have found that recent
cold winters in Eurasia are related to recent reduction
of sea ice in the Barents–Kara Seas and more frequent
Eurasian blocking, but not to the winter NAO. It is
worth noting that the SLP skill of October SIC/BK

FIG. 3. As in Fig. 2, but for November SIC anomalies.

5200 JOURNAL OF CL IMATE VOLUME 28

Predicted DJF 
Sea Level Pressure

1st EOF of November
Sea Ice Cover (SIC) 

This reemergence could translate into 
predictability beyond the Arctic, as several 
studies report important impacts of Arctic 

sea loss on the climate of the mid-latitudes

García-Serrano et al (2014)

Mariotti et al (2018)
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Evaluating the skill of climate prediction systems
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Evaluating the skill of climate prediction systems

Observations

1960

… every year …

2021
Illustration for 2 year predictions

5-member prediction 
started on Nov 2019

5-member prediction 
started on  Nov 1962

5-member prediction 
started on Nov 1961

5-member prediction 
started on Nov 1960

And so on…
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Earth System Models for near-term climate prediction
An example of skill in decadal climate predictions

Doblas Reyes et al (2013)

AMV Index PDO Index

Only for the AMV the initialised forecasts show significant predictive skill and beat persistence for 
predictive horizons of up to 9 years



Earth System Models for near-term climate prediction
Attributing skill in decadal climate predictions: internal vs forced

Yeager et al (2018)

Correlation Initialised Predictions vs OBS 
Forecast years 1 to 5



Earth System Models for near-term climate prediction
Attributing skill in decadal climate predictions: internal vs forced

Yeager et al (2018)

Correlation Initialised Predictions vs OBS 
Forecast years 1 to 5

Correlation difference Initialized vs Uninitialised
Forecast years 1 to 5

Most of the skill in multi-year predictions come from the external forcings, with only a few regions 
like the North Atlantic showing important skill from initialization of internal variability



Climate modeling and prediction timelineTake home messages

• Earth system models are our main tool to understand the climate system
and its changes, and have grown in complexity and accuracy with the major
improvements in high-performance computing

• Climate variability and change are governed by the evolution of both natural
and anthropogenic forcing factors, and can respond also to internal climate
processes

• While the influence of radiative forcings tend to dominate the global scale
changes, internal variability processes can produce important regional
changes in regions like the North Atlantic or the Tropical Pacific, and impact
continental areas via atmospheric teleconnections

• Models can be used to succesfully predict the climate from months to
several years (and even decades) ahead
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