
BSC testing protocol
and tools

Eric Ferrer, Gilbert Montané,
Genís Bonet, Rohan Ahmed

March 20, 2024



Index

1. Introduction
1.1 Motivation of testing the software
1.2 Why using complete workflows for technical tests
1.3 Autosubmit workflow manager

2. Testing suite tool
2.1 Testing protocols (weekly vs release)
2.2 Running the experiments
2.3 Results provided by the testing suite:

• Performance metrics
• Output checker
• Reports

2.4 Validated EC-Earth 3 releases
2.5 EC-Earth 4 plans

2



Intro: Motivation

Why test the software?

• Find any bugs before production runs start

• Test any new implemented features
• Software architecture differences

3



Intro: Motivation

Why test the software?

• Find any bugs before production runs start
• Test any new implemented features

• Software architecture differences

3



Intro: Motivation

Why test the software?

• Find any bugs before production runs start
• Test any new implemented features
• Software architecture differences

3



Intro: Motivation

An easy to fix bug related to how some machines intrepret the number 08 (or 09) in a text
as octal numbers leads to some errors like this one*:

The fix is just a 3 character addition to the line:

Detecting it in the early test phases is key

4* shown running manually the commands



Intro: Motivation

An easy to fix bug related to how some machines intrepret the number 08 (or 09) in a text
as octal numbers leads to some errors like this one*:

The fix is just a 3 character addition to the line:

Detecting it in the early test phases is key

4* shown running manually the commands



Intro: Motivation

An easy to fix bug related to how some machines intrepret the number 08 (or 09) in a text
as octal numbers leads to some errors like this one*:

The fix is just a 3 character addition to the line:

Detecting it in the early test phases is key

4* shown running manually the commands



Intro: Motivation
Differences between different HPC’s login nodes*:
• Marenostrum4 HPC login node (has default Python and modules):

• HPC2020 HPC login node (has modules but not default Python):

• MeluXina HPC login node (doesn’t have either default Python nor modules):

5* shown running manually the commands



Intro: Motivation
Differences between different HPC’s login nodes*:
• Marenostrum4 HPC login node (has default Python and modules):

• HPC2020 HPC login node (has modules but not default Python):

• MeluXina HPC login node (doesn’t have either default Python nor modules):

5* shown running manually the commands



Intro: Motivation
Differences between different HPC’s login nodes*:
• Marenostrum4 HPC login node (has default Python and modules):

• HPC2020 HPC login node (has modules but not default Python):

• MeluXina HPC login node (doesn’t have either default Python nor modules):

5* shown running manually the commands



Intro: Motivation

These differences between HPC’s remark some of the cases when there is an issue
• No issues: Version match -> everything works

• Best case error: No default version -> error shown and program crashes
• Worst case error: Version doesn’t match -> No crash -> possibility of hidden errors

6



Intro: Motivation

These differences between HPC’s remark some of the cases when there is an issue
• No issues: Version match -> everything works
• Best case error: No default version -> error shown and program crashes

• Worst case error: Version doesn’t match -> No crash -> possibility of hidden errors

6



Intro: Motivation

These differences between HPC’s remark some of the cases when there is an issue
• No issues: Version match -> everything works
• Best case error: No default version -> error shown and program crashes
• Worst case error: Version doesn’t match -> No crash -> possibility of hidden errors

6



Intro: Motivation

What parameters and options may affect an EC-Earth experiment that is running
with Autosubmit (auto-EC-Earth)?

• HPC (architecture) • CMORIZATION (T/F)
• LEGSIZE and #LEGS • ECE3 POSTPROC (T/F)
• #START DATES • PRODUCTION FLAGS (T/F)
• #MEMBERS • PRECOMPILED BINARIES (T/F)
• ACCOUNT (RES/BSC) • SAVE_IC configurations
• RESTARTS (cold start/restart) • TRANSFER PROCESS to archive
• COMPONENTS (IFS, NEMO[PISCES],
TM5, LPJG)

• SAVE RAW OUTPUT (MMA, MMO, DDA,
ICMCL...)

With this many variables, is impossible to run one experiment with each different
configuration available.

7



Intro: Motivation

What parameters and options may affect an EC-Earth experiment that is running
with Autosubmit (auto-EC-Earth)?

• HPC (architecture) • CMORIZATION (T/F)
• LEGSIZE and #LEGS • ECE3 POSTPROC (T/F)
• #START DATES • PRODUCTION FLAGS (T/F)
• #MEMBERS • PRECOMPILED BINARIES (T/F)
• ACCOUNT (RES/BSC) • SAVE_IC configurations
• RESTARTS (cold start/restart) • TRANSFER PROCESS to archive
• COMPONENTS (IFS, NEMO[PISCES],
TM5, LPJG)

• SAVE RAW OUTPUT (MMA, MMO, DDA,
ICMCL...)

With this many variables, is impossible to run one experiment with each different
configuration available.

7



Intro: End-to-End workflows

Why should we use end-to-end, full workflows for testing implementations?

• Tailored tests -> can lead to implementing new bugs
• Not use real cases -> not testing the current behavior

Summarizing:

• too general -> not useful -> might not check any specifics
• too specific -> not useful -> might not test different cases

Best option: multiple tests, with different real configurations, running in parallel after any
new integration

8



Intro: End-to-End workflows

Why should we use end-to-end, full workflows for testing implementations?

• Tailored tests -> can lead to implementing new bugs
• Not use real cases -> not testing the current behavior

Summarizing:

• too general -> not useful -> might not check any specifics
• too specific -> not useful -> might not test different cases

Best option: multiple tests, with different real configurations, running in parallel after any
new integration

8



Intro: End-to-End workflows

Why should we use end-to-end, full workflows for testing implementations?

• Tailored tests -> can lead to implementing new bugs
• Not use real cases -> not testing the current behavior

Summarizing:

• too general -> not useful -> might not check any specifics
• too specific -> not useful -> might not test different cases

Best option: multiple tests, with different real configurations, running in parallel after any
new integration

8



Intro: End-to-End workflows

Why should we use end-to-end, full workflows for testing implementations?

• Tailored tests -> can lead to implementing new bugs
• Not use real cases -> not testing the current behavior

Summarizing:

• too general -> not useful -> might not check any specifics
• too specific -> not useful -> might not test different cases

Best option: multiple tests, with different real configurations, running in parallel after any
new integration

8



Intro: Autosubmit workflow manager

Using a workflow manager is a ”must” with these kind of complex workflows. BSC-ES
develops the Autosubmit workflow manager, which is used to run all modelling experiments,
including those of EC-Earth *. Some of its features are:

• Automatization
• Built-in experiment manager
• Multi-platform
• Portable and interoperable
• RESTful API and web GUI

9
* Autosubmit is an open source Python tool that supports various infrastructures such as Destination
Earth or EDITO. (https://pypi.org/project/autosubmit/)



Intro: Autosubmit workflow manager

Using a workflow manager is a ”must” with these kind of complex workflows. BSC-ES
develops the Autosubmit workflow manager, which is used to run all modelling experiments,
including those of EC-Earth *. Some of its features are:

• Automatization
• Built-in experiment manager
• Multi-platform
• Portable and interoperable
• RESTful API and web GUI

9
* Autosubmit is an open source Python tool that supports various infrastructures such as Destination
Earth or EDITO. (https://pypi.org/project/autosubmit/)



Intro: Example Workflows (Real case)

Multi-member (5), 20-leg (long) experiment. 1 member, 86-leg (long) experiment.

10



Intro: Example workflows (Test case)

Multi-member multi-startdate (2&2), 2-leg experiment. 1 member, 3-leg experiment.

11



Testing suite tool

The testing suite (TS) software is a Python project, made at BSC, that allows anyone using
Autosubmit to control a set of test experiments from the command line and to execute
operations for all at once.

Main features of the tool:
• Control multiple experiments
• Check performance and output
• Compare the configuration of all the experiments.
• Generate reports.
• (In development): modularization of the tool.

12



Testing suite tool

The testing suite (TS) software is a Python project, made at BSC, that allows anyone using
Autosubmit to control a set of test experiments from the command line and to execute
operations for all at once.
Main features of the tool:
• Control multiple experiments
• Check performance and output
• Compare the configuration of all the experiments.
• Generate reports.
• (In development): modularization of the tool.

12



TS: Protocols
Auto-EC-Earth 3 testing protocols *:

WEEKLY RELEASES
When After any merge to trunk Every official release
(frequency) (once a month at least) (once or twice a year)
Which branch trunk (continuously changing) TAG X.X.X (frozen after

validation)
Compilation Every test Precompiled binaries on MN4,

and compiled on other HPCs
Duration Shorter: monthly legs (∼67%) Longer: yearly legs (∼75%)
of test cases except a few yearly (∼33%) except a few monthly (∼25%)
Validation Only Technical Both Technical and Scientific

13
* official EC-Earth3 releases are tested too, following a similar procedure to the auto-EC-Earth 3
Releases protocol



TS: Running experiments

Here is the procedure (commands) to run a new set of experiments:

14



TS: Running experiments

Most of the commands have an output pre-formatted for gitlab markdown, so it can be
directly copy-pasted to any issue, so this terminal output:

15



TS: Running experiments
Becomes this nice table on gitlab:

16



TS: Results provided

We can produce a performance report, and also a comparison with a previous run of the
same experiments. This allows to easily see any regresion in model performance.

17



TS: Results provided
We can also check the output of the experiments with a provided benchmark experiment
(2 checks - one for the files and another for the variables values). This allows for an easy
bit-to-bit reproducibility check against previous runs before perfoming a more complex
statistic reproducibility test.

18



TS: Results provided
And we can finally generate reports, using templates in html format to define what should
be included (also can be directly copy-pasted into gitlab markdown). Here is the ”simple”
report (with all experiments reportes in one table with some predefined variables):

19



TS: Results provided

Here is the default template report (generates separated tables for each experiment with
some predefined variables):

20



TS: Results provided
And last the custom template (generates the customized tables and variables for each
experiment):

21



TS: Validated releases

From some time ago, we started running our testing suite protocol to also validate the
EC-Earth releases, with the following ones being the ones finished:
• 3.3.3.2 (#991)
• 3.3.4 (#1075 & #1081, where an issue with TM5 compilation was found and solved
before the release)

• 3.3.4.2 maintenance branch release (#1206)
• 3.4 (#1205)

And we expect to continue validating the future releases (3.5 coming up next).

22



TS: EC-Earth 4 plans

We expect also to use the TS tool in EC-Earth 4.
For the moment, we already have a small initial auto-EC-Earth 4 workflow, using
Autosubmit 4, with the experiments used there being able to run from the TS tool.
But this is an initial setting and there isn’t that much of a wide variety of experiments yet.

23



Questions?

Eric Ferrer, Gilbert Montané,
Genís Bonet, Rohan Ahmed

eric.ferrer@bsc.es


