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Intro: Motivation

Why test the software?

• Find any bugs before production runs start

• Test any new implemented features
• Software architecture differences
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Intro: Motivation

An easy to fix bug related to how some machines intrepret the number 08 (or 09) in a text
as octal numbers leads to some errors like this one*:

The fix is just a 3 character addition to the line:

Detecting it in the early test phases is key

4* shown running manually the commands
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Intro: Motivation
Differences between different HPC’s login nodes*:
• Marenostrum4 HPC login node (has default Python and modules):

• HPC2020 HPC login node (has modules but not default Python):

• MeluXina HPC login node (doesn’t have either default Python nor modules):

5* shown running manually the commands
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Intro: Motivation

These differences between HPC’s remark some of the cases when there is an issue
• No issues: Version match -> everything works

• Best case error: No default version -> error shown and program crashes
• Worst case error: Version doesn’t match -> No crash -> possibility of hidden errors
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Intro: Motivation

What parameters and options may affect an EC-Earth experiment that is running
with Autosubmit (auto-EC-Earth)?

• HPC (architecture) • CMORIZATION (T/F)
• LEGSIZE and #LEGS • ECE3 POSTPROC (T/F)
• #START DATES • PRODUCTION FLAGS (T/F)
• #MEMBERS • PRECOMPILED BINARIES (T/F)
• ACCOUNT (RES/BSC) • SAVE_IC configurations
• RESTARTS (cold start/restart) • TRANSFER PROCESS to archive
• COMPONENTS (IFS, NEMO[PISCES],
TM5, LPJG)

• SAVE RAW OUTPUT (MMA, MMO, DDA,
ICMCL...)

With this many variables, is impossible to run one experiment with each different
configuration available.
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Intro: End-to-End workflows

Why should we use end-to-end, full workflows for testing implementations?

• Tailored tests -> can lead to implementing new bugs
• Not use real cases -> not testing the current behavior

Summarizing:

• too general -> not useful -> might not check any specifics
• too specific -> not useful -> might not test different cases

Best option: multiple tests, with different real configurations, running in parallel after any
new integration
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Intro: Autosubmit workflow manager

Using a workflow manager is a ”must” with these kind of complex workflows. BSC-ES
develops the Autosubmit workflow manager, which is used to run all modelling experiments,
including those of EC-Earth *. Some of its features are:

• Automatization
• Built-in experiment manager
• Multi-platform
• Portable and interoperable
• RESTful API and web GUI

9
* Autosubmit is an open source Python tool that supports various infrastructures such as Destination
Earth or EDITO. (https://pypi.org/project/autosubmit/)
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Intro: Example Workflows (Real case)

Multi-member (5), 20-leg (long) experiment. 1 member, 86-leg (long) experiment.
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Intro: Example workflows (Test case)

Multi-member multi-startdate (2&2), 2-leg experiment. 1 member, 3-leg experiment.
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Testing suite tool

The testing suite (TS) software is a Python project, made at BSC, that allows anyone using
Autosubmit to control a set of test experiments from the command line and to execute
operations for all at once.

Main features of the tool:
• Control multiple experiments
• Check performance and output
• Compare the configuration of all the experiments.
• Generate reports.
• (In development): modularization of the tool.

12



Testing suite tool

The testing suite (TS) software is a Python project, made at BSC, that allows anyone using
Autosubmit to control a set of test experiments from the command line and to execute
operations for all at once.
Main features of the tool:
• Control multiple experiments
• Check performance and output
• Compare the configuration of all the experiments.
• Generate reports.
• (In development): modularization of the tool.

12



TS: Protocols
Auto-EC-Earth 3 testing protocols *:

WEEKLY RELEASES
When After any merge to trunk Every official release
(frequency) (once a month at least) (once or twice a year)
Which branch trunk (continuously changing) TAG X.X.X (frozen after

validation)
Compilation Every test Precompiled binaries on MN4,

and compiled on other HPCs
Duration Shorter: monthly legs (∼67%) Longer: yearly legs (∼75%)
of test cases except a few yearly (∼33%) except a few monthly (∼25%)
Validation Only Technical Both Technical and Scientific
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* official EC-Earth3 releases are tested too, following a similar procedure to the auto-EC-Earth 3
Releases protocol



TS: Running experiments

Here is the procedure (commands) to run a new set of experiments:
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TS: Running experiments

Most of the commands have an output pre-formatted for gitlab markdown, so it can be
directly copy-pasted to any issue, so this terminal output:

15



TS: Running experiments
Becomes this nice table on gitlab:
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TS: Results provided

We can produce a performance report, and also a comparison with a previous run of the
same experiments. This allows to easily see any regresion in model performance.

17



TS: Results provided
We can also check the output of the experiments with a provided benchmark experiment
(2 checks - one for the files and another for the variables values). This allows for an easy
bit-to-bit reproducibility check against previous runs before perfoming a more complex
statistic reproducibility test.
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TS: Results provided
And we can finally generate reports, using templates in html format to define what should
be included (also can be directly copy-pasted into gitlab markdown). Here is the ”simple”
report (with all experiments reportes in one table with some predefined variables):
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TS: Results provided

Here is the default template report (generates separated tables for each experiment with
some predefined variables):
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TS: Results provided
And last the custom template (generates the customized tables and variables for each
experiment):
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TS: Validated releases

From some time ago, we started running our testing suite protocol to also validate the
EC-Earth releases, with the following ones being the ones finished:
• 3.3.3.2 (#991)
• 3.3.4 (#1075 & #1081, where an issue with TM5 compilation was found and solved
before the release)

• 3.3.4.2 maintenance branch release (#1206)
• 3.4 (#1205)

And we expect to continue validating the future releases (3.5 coming up next).
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TS: EC-Earth 4 plans

We expect also to use the TS tool in EC-Earth 4.
For the moment, we already have a small initial auto-EC-Earth 4 workflow, using
Autosubmit 4, with the experiments used there being able to run from the TS tool.
But this is an initial setting and there isn’t that much of a wide variety of experiments yet.
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Questions?

Eric Ferrer, Gilbert Montané,
Genís Bonet, Rohan Ahmed

eric.ferrer@bsc.es


