

Forecast Skill Assessment of Atlantic Tropical Activity over a 5-year Horizon

Louis-Philippe Caron

Climate Forecasting Unit, IC3, Barcelona

5th International summit on Hurricanes and Climate Change, *June 13th 2015*

Climate factors influencing Atlantic hurricane activity

Climate factor	Description	Timescale
North Atlantic Sea Surface Temperature		Annual, Decadal, +
El Niño Southern Oscillation	Oscillation in Tropical Pacific Ocean Temp.	Annual (~3-5 yr cycle)
West African Monsoon	Rainfall over Sahel region	Annual
North Atlantic Oscillation (NAO)	Seesaw pattern in sea level pressures b/w Iceland and the Azores	Annual
Solar activity		11-year cycle
Ozone concentration in upper atmosphere		Annual
Dust/aerosols over the Atlantic	Dust originating from Sahara desert	Annual
Madden-Julian Oscillation	Eastward propagating disturbances in the tropics	Intra-seasonal

 If slow variability in Atlantic TC activity is driven by North Atlantic SST

And

- If North Atlantic SST can be predicted at multi-annual timescale (5 yrs)
- (Reliable) Multi-annual forecasts of Atlantic TC activity should be possible

Climate prediction

Progression from initial-value problems with weather forecasting at one end and multi-decadal to century projections as a forced boundary condition problem at the other, with climate prediction (sub-seasonal, seasonal and decadal) in the middle. Prediction involves initialization and systematic comparison with a simultaneous reference.

Weather forecasts	Subseasonal to seasonal forecasts (2 weeks-18 months)	Decadal forecasts (18 months-30 years)	Climate-change projections
Initial-va	lue driven		Time
		Boundai	ry-condition driven

Adapted from Meehl et al. (2009)

The climate prediction drift issue

The climate prediction drift issue

Ensemble initialized near-term predictions

Nov 2000 Nov 2001 Nov 2002 Nov 2003 Nov 2004 Nov 2005 Nov 2006

Ensemble climate forecast systems

Assume a multi-model ensemble system with coupled initialized GCMs

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

HURDAT2

Correction by Vecchi and Knutson (2011)

from Klotzbach and Gray (2008)

Seasonal-to-decadal climate Prediction for the improvement of European Climate Services RPI2.0 Connecting Science and (Re)Insurance

Years

GCMs	Initialized	Non-Initialized
GFDL CM2.1	10	10
HadCM3	10	10
MIROC5	6	3
MPI-ESM-LR	5	3

CMIP5

SPECS (Seasonal-to-decadal climate Prediction for the improvement of European Climate Services)

Start dates: yearly, 1961 to 2010 5-year mean predictions (1961-1966 to 2010-2014)

Model selected based on

- 1) skill over designated area,
- 2) start dates available every year

ACC, 5-year mean MME detrended SST – Initialized Forecasts

ACC MME – MSLP (year 1-5)

ACC - MME

MSLP –Initialized Forecasts

60N

50N

40N

30N

20N

10N

0

290E

a day

310E

RPI2

Connecting Science and (Re)Insurance

RMSSS = 1 – RMSE / RMSE_{clim}

1: perfect prediction

0: no improvement over climatological forecast

5-year mean index

How does this skill translate into forecasting cyclone activity?

Can we predict the shift between active and inactive phases?

3.0 2.0 1.0 0.0 -1.0 -2.0 -3.0 1963 1969 1975 1981 1987 1993 1999 2005 2011

3.0 2.0 <u>1</u> 0.0 -1.0 -2.0 -3.0 1975 1963 1969 1981 1987 1993 1999 2005 2011

Still good correlation, but no predictive power

(Average Year 2-6) – (Year 1)

Summary

- Initialized GCMs do seem capable of predicting CSU index, which is linked to Atlantic TC activity, at multi-annual timescale (5yrs)
- Skill doesn't come only from persistence, i.e. we have some skill at predicting shift between active and quiet phases
- <u>Perspective</u>: plan to extend period of study using decadal forecasts spanning the entire 20th century

More info:

Caron, L.-P., L. Hermanson, and F. J. Doblas-Reyes (2015) Multiannual forecasts of Atlantic U.S. tropical cyclone wind damage potential, Geophys. Res. Lett.,42, 2417–2425.

Special thank you to

RPI2.0

Connecting Science and (Re)Insurance

Image credit: NASA