

Barcelona Supercomputing Center Centro Nacional de Supercomputación

BSC Performance tools suite: study cases on improving the efficiency of the EC-EARTH model components

Miguel Castrillo, Oriol Tintó, Kim Serradell Francisco J. Doblas-Reyes, Jesús Labarta

Efficiency in Earth science models

Barcelona Supercomputing Center Centro Nacional de Supercomputación

- Efficiency is especially critical for Earth science models
- Simulations use a huge amount of computational resources
- Future simulations will need many more resources
 - Computational time
 - Storage and postprocess
 - Software to simplify the usage of the model

Energy efficiency

Barcelona Supercomputing Center Centro Nacional de Supercomputación

• Energy efficiency

Performance loss caused by:

- Bad programming
- Load imbalance
- Synchronization
- Resource contention
- ...

- Since 1991
- **Based** on traces
- Open Source: http://www.bsc.es/paraver
- **Extrae**: Package that generates Paraver trace-files for a post-mortem analysis
- **Paraver**: Trace visualization and analysis browser
 - Includes trace manipulation: Filter, cut traces
- **Dimemas**: Message passing simulator

PARAVER trace analysis

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Serial efficiency

Barcelona Supercomputing Center Centro Nacional de Supercomputación

EC-Earth: A coupled climate model

EC-Earth

- Earth System Model
- Reliable in-house predictions of global climate change
- Part of a Europe-wide consortium
- Being used in large European projects
 - EMBRACE
 - EUPORIAS
 - IS-ENES
 - SPECS
 - PRIMAVERA
- 3.1 version → IFS + NEMO-LIM + OASIS

 Preparing the next CMIP6 high-resolution simulations called HiResMIP

- Target resolutions are T511-ORCA025 and T1279-ORCA12
- 19 European groups involved
- No experience in analyzing efficiency on these resolutions

	Single climate experiment (10 members, 60 start dates, 10 years simulated)					
Resolution	Grid Size	Output Size	Computation Time			
T511-ORCA025	Atmos 40km - Ocean 25km	720 Tb	132.0 x 10 ⁶			
T1279-ORCA12	Atmos 16km - Ocean 9km	1,4 Pb	NA			

An EC-Earth Paraver trace

- Motivation: Finding a good configuration to **optimize** the resources usage
- IFS T255L91-ORCA1L46
- Configuration widely used in production
 - Using 7 cores for OASIS, 96 for IFS and 48 for NEMO
- 1 day simulation traces
- Traces generated in burst mode (only computational regions > 100us)
- Paraver view → Useful duration (displays duration of computational bursts)

XCELENCU

Barcelona

Supercomputing Center

Nacional de Supercomputaciór

Barcelona Supercomputing Center Centro Nacional de Supercomputación

NEMO: An ocean model

NEMO ocean model

Barcelona Supercomputing

Nucleus for European Modeling of the Ocean (NEMO) is a stateof-the-art global ocean model

It is used in oceanographic research, operational oceanography, seasonal forecast and climate studies

Includes several **sub-models**. Many of them can work in standalone version, many others need to be coupled

NEMO model scalability

EXCELENCIA SEVERO OCHOA Supercomputing

*Timelines have the same duration

LIM model as a bottleneck

BSC	Barcelona Supercomputing Center Centro Nacional de Supercomputación

10

48

. .

.....

. .

Sea ice horizontal diffusion

EXCELENCIA SEVERO

LIM HDF

288 **Outside MPI** MPI Isend **MPI Recv MPI** Wait MPI All gather

Only 20% of the time invested on computation

Global Communication at every loop iteration → 60% of the time

Barcelona Supercomputing Center Centro Nacional de Supercomputación

NEMO model optimizations

Global communications reduction

- Convergence check that is executed in every loop iteration
- Control structure put to reduce the frequency by a factor of N

```
do while( control > threshold) ! Sub-time step loop
   . . .
      some computation with x
   call interchange ( x ) ! lateral boundary condition
   control = max(x) ! Find local max
   call global_max( control ) ! Find global max
end do
                        ! end of sub-time step loop
```

XCELENCIA

Barcelona

Center

BSC

Supercomputing

ntro Nacional de S

Message packing

Performance improvement

- Message Packing + Reduction of global communications
- Increase in the model scalability and efficiency

EXCELENCIA

Barcelona

Center

BSC

Supercomputing

Centro Nacional de Supercomputación

But it can be even better...

- Even though, in each LIM iteration we have:
 - 41 lim_hdf calls
 - More than 1400 collectives and border interchanges
- lim_hdf calls are (almost) independent → Reorder it to achieve coarser granularity and reduce collectives number by using the message packing

Original

EXCELENCIA

Barcelona

Supercomputing

More performance improvement

- Previous optimizations already included in a new model branch and now are merged into the NEMO 3.6 trunk
- New optimizations increase further scalability

Scalability Improved!

Efficiency Improved!

XCELENCIA

Barcelona

Supercomputing Center Centro Nacional de Su

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Conclusions

Barcelona Supercomputing Center Centro Nacional de Supercomputación

- Little changes in the configuration can significantly improve the performance
- **Trace analysis** can **guide** the **users** in understanding the behavior of the code
- A precise analysis and prediction can generate ideas that direct the restructuring of the application in the most productive way
- Performance analysis is critical for a rational usage of the resources

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Thank you!

For further information please contact miguel.castrillo@bsc.es