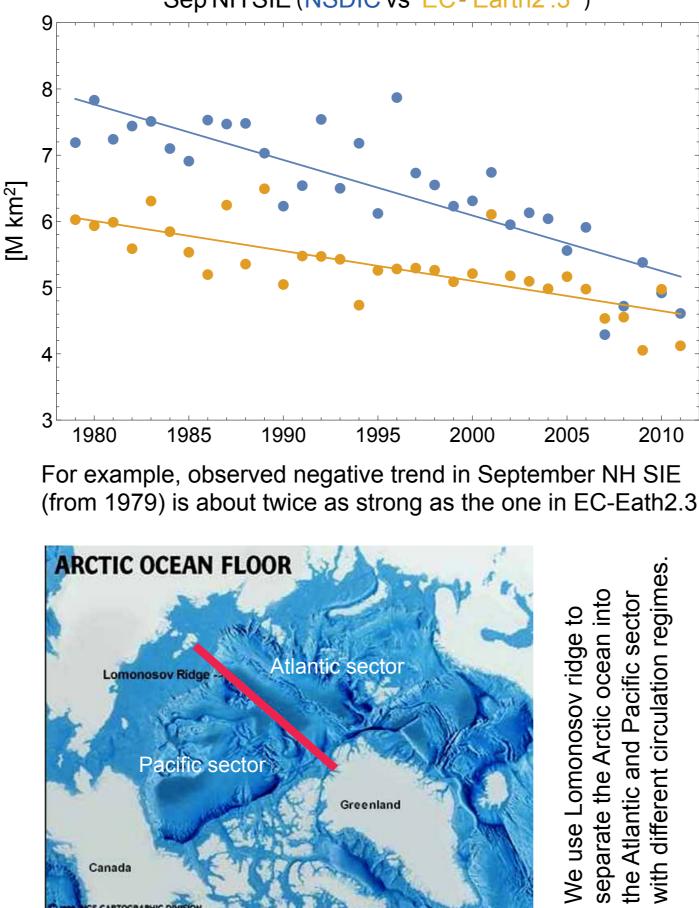


iCrea

On the anatomy of the NH sea ice extent and impacts of different bias correction methods in a set of CMIP5 coupled climate models



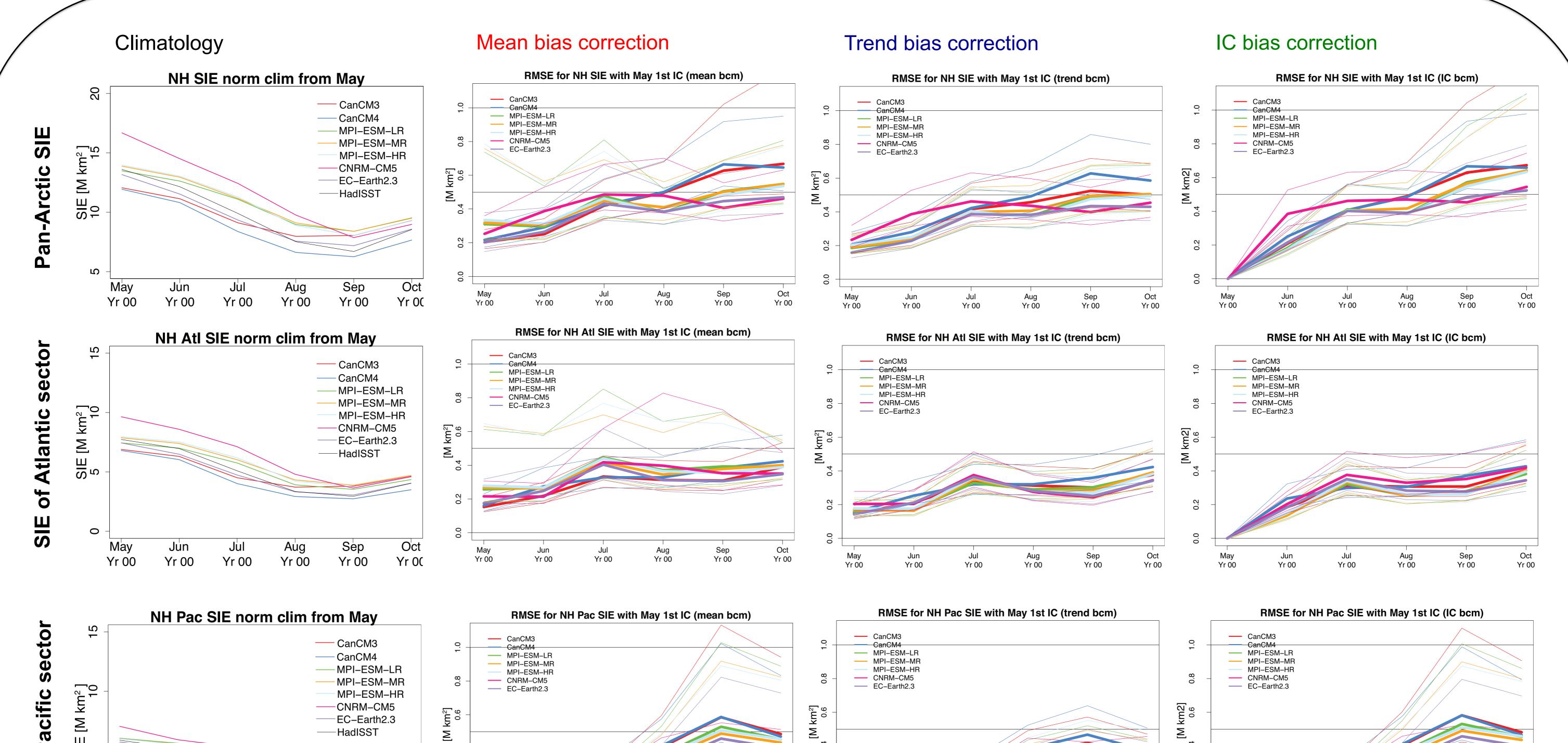
Neven S. Fučkar^{1,7} (nevensf@gmail.com), Virginie Guemas^{1,2,7}, Matthieu Chevallier², Michael Sigmond³, Felix Bunzel⁴, Rym Msadek⁵ and Francisco J. Doblas-Reyes^{1,6,7}

¹Institut Català de Ciències del Clima (IC3), Barcelona, Spain, ²Centre National de Recherches Météorologiques/Groupe d'Etude de l'Atmosphère Météorologique, Météo-France, CNRS, Toulouse, France, ³Candain Center for Climate Modeling and Analysis, Victoria, British Columbia, Canada, ⁴Max Planck Institute for Meteorology, Hamburg, Germany, ⁵Geophysical Fluid Dynamics Laboratory, NOAA, Princeton, NJ, USA, ⁶Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, ⁷Earth Sciences Departments, Barcelona Supercomputing Center, Barcelona, Spain

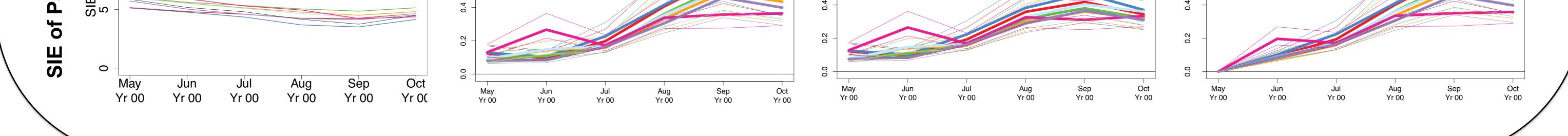
The mean bias correction method – can account for error in mean

- We investigate the NH sea ice extent (SIE) in a set of CMIP5 models used for seasonal forecast with full-field initialization (1981-2010 period): EC-Earth2.3, CNRM-CM5, MPI-ESM-LR, MPI-ESM-MR, MPI-ESM-HR, CanCM3 and CanCM4
- Even with the best possible forcing, BC and IC model drift and bias can be > signal of interest \rightarrow bias correction is necessary to asses skill
- Arctic sea ice cover in this set of models has typically different long-term mean, change and interannual variability than the observed one \rightarrow can utilizing a hierarchy of bias correction methods yield better prediction skill?
- Is there a difference in prediction skill of the Atlantic and Pacific sector of the Arctic?

$$m_{i,l} \equiv \overline{m_l} + m'_{i,l} \text{ and } o_{i,l} \equiv \overline{o_l} + o'_{i,l},$$


$$m_{i,l} \longmapsto \hat{m}_{i,l} \equiv m_{i,l} - [\overline{m_l} - \overline{o_l}] = \overline{o_l} + m'_{i,l}.$$

• The trend bias correction method – can account for error in lin. trend


$$\begin{split} m_{i,l} &\equiv [a_l^{(m)} + b_l^{(m)}i] + m_{i,l}'' \quad and \quad o_{i,l} \equiv [a_l^{(o)} + b_l^{(o)}i] + o_{i,l}'', \\ m_{i,l} &\longmapsto \quad \tilde{m}_{i,l} \equiv m_{i,l} - \{ [a_l^{(m)} + b_l^{(m)}i] - [a_l^{(o)} + b_l^{(o)}i] \} \quad \substack{\text{m-"raw" forecast,} \\ o - obs/analysis, \\ i - start \; date \; (year), \\ l - forecast \; time } \end{split}$$

 The IC bias correction method - can take into account interannual variability in initial conditions

 $m_{i,l} \equiv [\alpha_l^{(m)} + \beta_l^{(m)} o_i^{(IC)}] + m_{i,l}^{'''} \text{ and } o_{i,l} \equiv [\alpha_l^{(o)} + \beta_l^{(o)} o_i^{(IC)}] + o_{i,l}^{'''},$ $m_{i,l} \longmapsto \tilde{\tilde{m}}_{i,l} \equiv m_{i,l} - \{ [\alpha_l^{(m)} + \beta_l^{(m)} o_i^{(IC)}] - [\alpha_l^{(o)} + \beta_l^{(o)} o_i^{(IC)}] \}$ $= \hat{m}_{i,l} - [\beta_l^{(m)} - \beta_l^{(o)}][o_i^{(IC)} - o_i^{(IC)}].$

Instantaneous IC is too noisy \Rightarrow smoothing OBS IC in time is critical for monthly and longer-term predictions Implemented: **O**^(IC)_i=**O**_{i.1} (average over the first forecast month)

RMSE for NH Atl SIE with Nov 1st IC (mean bcm)				_	RMSE for NH Atl SIE with Nov 1st IC (trend bcm)							RMSE for NH Pac SIE with Nov 1st IC (mean bcm)						
b	CanCM3	Atlantic sect	tor	0	— c	CanCM3	Atla	antic se	ctor		0	— CanCM		Pa	cific se	ctor		
-	GanCM4 MPI-ESM-LR MPI-ESM-MR MPI-ESM-HR CNRM-CM5 EC-Earth2.3	Mean bias c	correction	0.8		CanCM4 MPI-ESM-LR MPI-ESM-MR MPI-ESM-HR CNRM-CM5 EC-Earth2.3	Tre	end bias		tion	0.8 1.(SM-LR SM-MR SM-HR -CM5	Με	an bias	s correc	tion	
-				[M km ²] 0.6							[M km ²] 0.6							
-				0.2							0.2 - 0.4							
No	v Dec J	I I Jan Feb	Mar Ap	0.0	Nov	Dec	Jan	Feb	Mar	Apr	0.0	Nov	Dec	Jan	Feb	Mar	Apr	

In boreal winter different bias correction methods offer no significant improvements in prediction skill, while Atlantic and Pacific sector of the Arctic are equally predictable

- \rightarrow NH sea ice cover in winter is more predictable than in summer
- \rightarrow Annual cycle of sea ice in the Pacific sector of the Arctic has smaller amplitude than in the Atlantic sector
- \rightarrow IC (trend) bias correction method offers potential for an improvement of prediction skill in MJJ (JAS/ASO) initialized on May 1st

 \rightarrow In summer sea ice in the Atlantic sector of the Arctic is more predictable than sea ice in the Pacific sector