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Why do we study solid mechanics?

Anyone concerned with the strength and physical performance of 
natural/man-made structures should study Mechanics of materials



From small pieces…

drill crankshaftdouble cantilever beam



… to big structures

Thermo-mechanical simulation 
of a refrigeration tower

Seismical structural analysis of the main 
torus of Tokamak fusion reactor

Thermo-hydro-mechanics simulation 
of a Rolls Royce turbine of a plane



… and not only structures… 
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Long skeletal muscles (in collaboration with J. Georgiadis, 
University of Illinois)

Cerebral aneurysms (in collaboration with 
George Mason University)



Numerical simulation 



Outline

• Mechanics of materials

• Basics on continuum solid mechanics

• Kinematics

• Balance of momentum equation

• Principle of Virtual work and weak form

• Elasticity

• Hyperelasticity

• Composite materials

• Damage and failure

• Fracture

• XFEM

• CZM



            Compression   Tension (stretched)   Bending       Torsion (twisted)       Shearing 
 

Mechanics of materials, solid mechanics, is a branch of applied mechanics 
that deals with the behaviour of solid bodies subjected to various types 
of loading.

Mechanics of materials



Material types

ISOTROPIC - same material properties in all directions, 
steel is a typical example.

ANISOTROPIC - different material properties in all 
directions, a chunk of volcanic rock is an example.

ORTHOTROPIC - special case of anisotropic, clear 
material directionality in 3 directions, wood is an 
example (material properties in three perpendicular 
directions -axial, radial and circumferential- are different).

Easy to measure properties

Tough to measure or predict properties

Measurable and predictable properties - some challenges

Composite materials



Basics on continuum solid mechanics



Lagrangian vs. Eulerian description

Lagrangian or material description

• Physical quantities (and equations) are described 
with material coordinates X.

• For example, M(X,t) represents the physical 
quantity (temperature, stress, etc.) of the particle 
at t=0 was at position X, and a function of time.

• If we fix X, we follow the same material particle 
at different points of the space.

Eulerian or spatial description

• Physical quantities (and equations) are described 
with spatial coordinates x.

• For example, m(x,t) represents the physical 
quantity (temperature, stress, etc.) at time t at 
the spatial position x.

• If we fix x, we are observing the same spatial 
points, where different material particles may be 
located at different times. .



Lagrangian vs. Eulerian description

The motion is given by the deformation mapping

We will use Lagrangian formulation



• Motion and deformation (kinematics)

• Useful measures in non-linear continuum mechanics (depend on the 
configuration)

• Strain measures: Green-Lagrange, rate of deformation, … 

• Stress measures: Cauchy, nominal stress, 1PK, 2PK, …

• Conservation equations

• Common to solids and fluids: mass, momentum, energy

• Momentum equation            equilibrium equation

• Large deformations vs. small deformations

Continuum solid mechanics: frame of reference

Large variety of measures! (adding nothing fundamental…)



Map from reference domain to physical domain

Conservation of  linear momentum equation

using first Piola-Kirchhoff P.

Continuum solid mechanics: frame of reference



Deformation mapping

• Initial domain B0 is deformed to B: mapping from B0 to B

• X: material point in B0 x: material point in B

• Infinitesimal length dX in B0 deforms to dx in B

• Remember that the mapping is continuously differentiable 

             x = X + u                    x = φ(X,t) = X + u(X,t)



Stress and strain measures
Useful quantities

• Deformation gradient tensor (gradient of the mapping)

• Strain measures: Green-Lagrange strain

• Stress measures: 
• The Cauchy stress (true stress)

• The first Piola-Kirchhoff

• The second Piola-Kirchhoff



Stress and strain measures

For solid mechanics applications, it is instructive to directly develop the 
conservation equations in terms of the Lagrangian measures of stress and strain 
in the reference configuration ( P(F) and E ).
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• Cauchy stress (true stress): Force acts on the deformed configuration and the 
area in the deformed configuration.

• First PK stress (nominal stress): Force  int he deformed configuration and the 
area in the undeformed configuration.



Small deformation vs. Large deformation

In this presentation we will assume Large deformations

Small deformation hypothesis 

• Small displacements: we equate the initial and deformed 
configurations, and set the equilibrium equation as the initial 
configuration (no update along time)

• Small displacement gradient: 

• Under the small deformation hypothesis we can linearise the 
problem:



Polar decomposition

Polar decomposition theorem for large deformations

• Any gradient tensor F with a nonzero determinant can be 
multiplicatively decomposed into the product of an orthogonal 
matrix R and a positive definite symmetric tensor U 

Physical interpretation

• The material element dX first undergoes a pure stretching U and 
then rotation R



Conservation of linear momentum with the first PK 

This must be complemented with the constitutive equation, which 
characterises the material behaviour:

Conservation equations

The pair P and F is not especially useful for constructing constitutive equations, since F does 
not vanish in rigid body motion and P is not symmetric. Therefore constitutive equations are 
usually formulated in terms of the of the PK2 stress S and the Green strain E.

S = S(E)



Weak form: principle of virtual power

• Multiply the momentum equation by a test function w and integrate 
over the reference configuration

• Apply integration by parts and the divergence theorem in the first 
integral

• Since           in the boundary and the applied traction               at the 
traction boundary



Weak form: principle of virtual power

• It can also be deduced from the principle of virtual work

VW of inertial 
forces

VW of internal 
(elastic) forces

VW of external loads

VW of boundary
 loads

VW of volumetric 
loads

• Usually it is written as the equilibrium equation



Discretization with FEM

• As standard, approximate unknown nodal position and test functions

• And replacing in the weak form 



Solving the system of equations

• Static problems (no need to compute matrix M)

• Solve the matrix equations (direct solver vs. iterative solver)

• Dynamic problems: the discretised equations are coupled with a set of 
ODEs

• Select a time step

• Adopt and algorithm to advance in discrete time steps:   
Newmark scheme

• Stability and accuracy need to be considered



Elasticity



Linear Elasticity

What does linear elastic mean?
• An elastic material wants to resist a change in shape.                          

It returns to its original shape.
• Linear relationship between how hard you squish                             

it and how much it deforms (stress and strain). 

Do real materials that we care about actually have these properties? 
• In general, solids like plastic and metal behave                             

more or less as linear elastic materials unless                               
you really bend or squish them. 

• Above some threshold amount of force, materials                           
become both nonlinear and non-elastic.  After                                
that point, materials will usually permanently                               
bend and eventually crack.



Isotropic Elasticity

• Elasticity: one-to-one relation between stress and deformation.

• Isotropic elasticity: the behaviour is independent of the orientation. 
The elasticity tensor C does not depend on the basis.

C is a 4th order tensor with 81 parameters but.. applying 
symmetries it reduces to 21 parameters

Recall: we use total Lagrangian formulation, where 2PK S and the G-L strain 
E are the natural choice. It’s easy to recover 1PK P from: 



Isotropic elasticity

In the case of isotropic elasticity, the elasticity tensor C is constant and 
solely characterised by a pair of elastic moduli, e.g., two Lame’s constants 
λ and μ

Lamé equations

Usually the following parameters are used

Shear modulus

Young modulus

Poisson



Young modulus and poisson 

Poisson effect: when a material is compressed in one direction, it usually 
tends to expand in the other two perpendicular directions:.

The limits of the Poisson ratio are: 

• ν=0: no influence of lateral stresses to the strain, no lateral contraction (cork)

• ν=0.5: incompressible material, means there is no volume change under loads 
(rubber)

• ν=0.2-0.3: typical values for linear elastic material (ceramics and metals)

Young's modulus, which is also 
known as the elastic modulus, is a 
mechanical property of linear elastic 
solid materials. It defines the 
relationship between stress and 
strain in a material.



Simply supported beam

Supported bridges and high way road.

•  E = 2.1e+11!
•  v = 0.3!

•  dimensions: !

•  Real: 100 x 50 x 2!

•  Model: 50 x 50 x 2 (symmetry BC)!

•  pressure = 0.5!



Simply supported beam



Full barrel fuselage

E = 70000 ,  ν=0.3  

Isotropic material behaviour

Unixaial compression loading
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Full barrel fuselage: postbuckling behaviour

Buckling is a mathematical instability, 
leading to a failure mode. It is caused 
by a bifurcation in the solution to 
the equations of static equilibrium.



Hyperelasticity



Definition and properties

• Materials that exhibit elastic behaviour through large strains to 300%.
• Stress is a function of current total strain (independent of history).
• Stress-strain relationship derives from a strain energy density function 

(elastic potential) W(E) instead of a constant factor , such that

Hyperelasticity



Generally comes with incompressibility (J=1)

• The volume preserves during large deformation.

• Mixed formulation: completely incompressible hyperelasticity (pressure 
p is additional unknown).

• Penalty formulation: nearly incompressible hyperelasticity (linearization).

Typical materials

• Rubber material

• Plastic - particularly foams

• Biological tissues

Hyperelasticity



Constitutive models in hyperelasticity

• The description of the strain energy density W is much more 
complex, compared to linear elastic material, where S is a linear 
function of E.

• In general W is a function of the stretch invariants W=f(I1,I2,I3).

Classical hyper elastic models

• Neo-hookean

• Mooney-Rivlin

• Holzapfel



What is the right model to describe my material?

• If the strain is below apron. 5-10%, for many applications the simple 
Hooke’s law is accurate enough to describe hyperelastic materials, so 
the time consuming nonlinear analysis can be replaced by a very 
quick linear one.

• If the strain becomes bigger but we don’t have many test data, it is a 
good idea to start as a rough estimate with the most simple model, 
Neo-hookean, where the two necessary material contacts can be 
obtained from the initial shear and initial bulk modulus.

• If more tests are available, we select the best suitable model…

K is the bulk modulus and 
represents the ratio between 
uniform stress and uniform 
s t r a i n ( ~ i n v e r s e o f 
compressibility)



Neo-hookean material: uniaxial test

Fitting Measured Data to Different Hyperelastic Material Models
Chandan Kumar | June 24, 2015 (COMSOL)



Neo-hookean material: Cook’s membrane test

Soft material (~biological tissue): E = 200            ν=0.35

Robust numerical calculation of tangent moduli at finite strains based on complex-
step derivative approximation and its application to localization analysis
Masato Tanaka, Masaki Fujikawa, Daniel Balzani,Jörg Schröder



HGO material: Cardiac model



Composite materials



Composite materials



Composite materials

Why composite laminates?

• High strength/stiffness and light weight

• Excellent Thermal/Erosion Resistance

• Anisotropic Mechanical/Thermal Behavior

• Design optimization

   The deficiencies in the models representing mechanical behaviour of 
composites have tremendous effects on the costs of composite structures

How to improve constitutive models? 

• Simulate different failure scenarios where the analytical are no 
longer valid 



-  Glass 
-  SiC 
-  Aramid/

Kevlar 
-  Carbon 

-  Epoxy/Plastic 
-  Ceramic 
-  Metal 

Fiber reinforced 
plastic composite 
-  GFRP 
-  CFRP 

-  Laminate 
-  Woven 

Fiber Matrix Composite + = 

• The composite is a system which consists of fibres in a  resin or similar 
medium (usually called the matrix).

• The important strength and stiffness characteristic are provided by the high 
strength fibres.

• The fibres are usually shown as a schematic, in practice they will be very 
small diameter and scattered though the matrix in a ply.

• It is important to consider both the fibres and the matrix in the material 
stiffness and strength considerations.

Composite materials



Composite materials: damage and failure



• In elastic materials, the mechanical response of a material is described 
by the relation

• For more involved materials, such as composites, that may develop 
damage, we need to define a constitutive model with internal variables

• The simplest damage model is the scalar damage model:

The internal variables track the material state. The determination of a 
reliable set of internal variables is a critical point in any constitutive model.

Typical internal variables are:  temperature, kinematics, state variables.

Damage models

• Fro a damage model it is necessary to define the damage onset and the 
damage evolution (damage laws).



Damage models

Failure process



Matrix cracking



Matrix cracking

Transverse cracking scheme: onset and accumulation up to the final failure



Matrix cracking

Transverse cracking scheme: onset and accumulation up to the final failure



Matrix cracking

Delamination 

Transverse cracking scheme: onset and accumulation up to the final failure



Matrix cracking

[Bailey, J.E and Parvizi, A. (1981). On fiber debonding Effects and the Mechanisms of Transverse-Ply 
Failure in Cross-Ply Laminates ofGlass/Fiber/Themroset Composites, J. mat. Sci., 16: 649-659] 



Fracture



Four points shear test

Four-point shear test (FPST) sample
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Linear isotropic material (concrete)



Four points shear test



Four points shear test

Step 1. Crack initiation Step 2. Maximum load

Step 3. Crack propagation Step 4. Final loading

Crack evolution



Four points shear test

Step 1. Crack initiation Step 2. Maximum load

Step 3. Crack propagation Step 4. Final loading

Stress evolution



Four points shear test
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Analysis Mesh Convergence

- Coarse mesh: 25.000 elements
- Medium mesh: 200.000 elements
- Fine mesh: 1.600.000 elements



XFEM

Numerical method: Extended Finite Element Method (XFEM)

- Method adapted to the FE code
- Non-depending mesh
- Crack propagation and simulation heterogeneous materials



XFEM

• Enrichment of standard FEM solution: approximation to account for 
discontinuities

• Shifted Heaviside functions improve scalability



XFEM

• FEM formulation

• Approximation for the test function

• Replacing and discretising, in matrix form we obtain the system:



Cohesive zone model

• Cohesive zone elements do not represent any physical material, but 
describe the cohesive forces which occur when material elements are 
being pulled apart. Therefore cohesive zone elements are placed 
between continuum (bulk) elements.

• When damage growth occurs these cohesive zone elements open in 
order to simulate the crack initiation crack growth.

• The direction of the crack propagation strongly depends on the 
presence (or absence) of cohesive zone elements (mesh dependence). 



Work done in collaboration with IMDEA materials 
and Oxford University

Cohesive zone model



Open hole test

• Carbon fiber/epoxy resin laminate with sequence [90/+45/-45/90/0]s 

• Each ply of the laminate has transversely isotropic properties

• Intra-laminar: XFEM + Extrinsic CZM

• Inter-laminar: Intrinsic CZM

Work done by BSC in collaboration with IMDEA materials and Oxford University



Experimental sample in the initial state

Numerical model used for simulations

Open hole test

Experimental sample after the tensile test

Numerical model after the simulation

Deformation map at 0.8% strain, 1.2% strain and 1.3% (fractured specimen)



Open hole test

Matrix cracks for plies 1,2,3,4 and 5 at 90% failure load



Open hole test

Delamination at 90% failure load



Stress-strain curves for 
experimental tests  and 
simulation

Open hole test



Composite fuselage panel



Composite fuselage panel



Composite fuselage panel

Fuselage panel under compression after 
impact test

Force-displacement and out-of-plane deformation 
of curved fuselage panel

SARISTU project (ICL)
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Stress and strain measures

For solid mechanics applications, it is instructive to directly develop the 
conservation equations in terms of the Lagrangian measures of stress and strain 
in the reference configuration ( P(F) and E ).


