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Why do we study solid mechanics!?

Anyone concerned with the strength and physical performance of
natural/man-made structures should study Mechanics of materials




From small pieces...
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drill double cantilever beam crankshaft



... to big structures

Thermo-mechanical simulation Seismical structural analysis of the main Thermo-hydro-mechanics simulation
of a refrigeration tower torus of Tokamak fusion reactor of a Rolls Royce turbine of a plane



... and not only structures...

Cerebral aneurysms (in collaboration with Long skeletal muscles (in collaboration with J. Georgiadis,
George Mason University) University of lllinois)




Numerical simulation

Collaboration




Mechanics of materials

Basics on continuum solid mechanics

Kinematics

Balance of momentum equation

Principle of Virtual work and weak form

Elasticity

Hyperelasticity

Composite materials

Damage and failure

Fracture

XFEM
CZIM



Mechanics of materials

Mechanics of materials, solid mechanics, is a branch of applied mechanics
that deals with the behaviour of solid bodies subjected to various types
of loading.

-

' »
Iy s
AL

Compression Tension (stretched) Bending Torsion (twisted) Shearing



Composite materials

Material types

ISOTROPIC - same material properties in all directions,
steel is a typical example.

Easy to measure properties

ANISOTROPIC - different material properties in all
directions, a chunk of volcanic rock is an example.

Tough to measure or predict properties

ORTHOTROPIC - special case of anisotropic, clear
material directionality in 3 directions, wood is an
example (material properties in three perpendicular
directions -axial, radial and circumferential- are different).

Measurable and predictable properties - some challenges



Basics on continuum solid mechanics



Lagrangian vs. Eulerian description

Lagrangian or material description

~

Lagranian Description

A B@)  Physical quantities (and equations) are described
tl ® 0® o ©® o @ with material coordinates X.
/l /’ 1' e For example, M(X;t) represents the physical
/ / | Cx quantity (temperature, stress, etc.) of the particle
0 e~ —— u—— - at t=0 was at position X, and a function of time.
B(t=0) * If we fix X, we follow the same material particle

at different points of the space.

t Eulerian Description
i B(tl)
i o (v) ) ’() () O) Eulerian or spatial description
/on L * Physical quantities (and equations) are described
/o l / A X with spatial coordinates x.
pd Z / / 1/ / ’
0 @ o @ ¢ —©® - e For example, m(x,t) represents the physical
B(t=0) quantity (temperature, stress, etc.) at time t at
the spatial position x.
Nodal * If we fix x, we are observing the same spatial
O Node Trajectory points, where different material particles may be
® Material Point ~ — — — Matenal Pomt located at different times. .

Trajectory



Lagrangian vs. Eulerian description

The motion is given by the deformation mapping @ = ¢(X 1)
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(a) Lagrangian approach (b) Present Eulerian approach

We will use Lagrangian formulation



Continuum solid mechanics: frame of reference

* Motion and deformation (kinematics)

* Useful measures in non-linear continuum mechanics (depend on the
configuration)

* Strain measures: Green-Lagrange, rate of deformation, ...
* Stress measures: Cauchy, nominal stress, | PK, 2PK, ...
Large variety of measures! (adding nothing fundamental...)
* Conservation equations
* Common to solids and fluids: mass, momentum, energy

* Momentum equation equilibrium equation

—

* Large deformations vs. small deformations



Continuum solid mechanics: frame of reference

Map from reference domain to physical domain

X SR £Zr
e >
Or ox
F = % J = detF’ v(X,t) = En

Conservation of linear momentum equation

v (X ,t)

PO—o V-P + po

using first Piola-Kirchhoff P.



Deformation mapping

* Initial domain Bo is deformed to B: mapping from Bo to B
* X: material point in Bo x: material pointin B
* Infinitesimal length dX in Bo deforms to dx in B

* Remember that the mapping is continuously differentiable

x=X+u ——>  x=@Xt) = X+ u(Xt)

Undeformed

Deformed
configuration

— . —— e —— —
———— W —— —
—

Reference
configuration



Stress and strain measures

Useful quantities

* Deformation gradient tensor (gradient of the mapping)

Ox1 Ox1 Ox1

. (2 J 0X 0 X: o0X:
F_ ox F.— alz. F — 01‘1)1 01“22 813 J = det F
= v Y= 39X — | X 0Xo OX3 B

Orqg Oxryg O

* Strain measures: Green-Lagrange strain

1
2

E— %(FT F-1) Ey==(FLE,-d;)
* Stress measures.

* The Cauchy stress (true stress) o=J'PF?

* The first Piola-Kirchhoff P(F)

* The second Piola-Kirchhoff S=F P



Stress and strain measures

* Cauchy stress (true stress): Force acts on the deformed configuration and the
area in the deformed configuration.

* First PK stress (nominal stress): Force int he deformed configuration and the
area in the undeformed configuration.

Undeformed configuration  Deformed configuration

n-odS = df = tdS

N -PdSo =df = todSy

df = tdS = todSo

v

For solid mechanics applications, it is instructive to directly develop the
conservation equations in terms of the Lagrangian measures of stress and strain
in the reference configuration ( P(F) and E).



Small deformation vs. Large deformation

Small deformation hypothesis

 Small displacements: we equate the initial and deformed
configurations, and set the equilibrium equation as the initial
configuration (no update along time)

xr~ X

* Small displacement gradient:
ou,;
IBXJ-
* Under the small deformation hypothesis we can linearise the
problem:

<1

1 ou; ou; odup. Oup 1 7 Ou; du;
Eij = 5(8)(]- i C7_Xz i 0X; aXJ-) o §(BXJ- N C)_.Xz)

In this presentation we will assume Large deformations



Polar decomposition

Polar decomposition theorem for large deformations

* Any gradient tensor F with a nonzero determinant can be
multiplicatively decomposed into the product of an orthogonal
matrix R and a positive definite symmetric tensor U

dx j

F=R-U Fj =—L% =
an

j Rix Uy

Physical interpretation

* The material element dX first undergoes a pure stretching U and
then rotation R

dx =R'U-dX




Conservation equations

Conservation of linear momentum with the first PK P(F).

ov(X,t) X o
P0 o = V-P + pob - N

i/povde / pode—l—/ tdS
dt |y Jv Jsv

This must be complemented with the constitutive equation, which
characterises the material behaviour:

S = S(E)

The pair P and F is not especially useful for constructing constitutive equations, since F does
not vanish in rigid body motion and P is not symmetric. Therefore constitutive equations are
usually formulated in terms of the of the PK2 stress S and the Green strain E.



Weak form: principle of virtual power

* Multiply the momentum equation by a test function W and integrate
over the reference configuration

ov(X.,t) B
£0 o = V-P + pob
V-P-de—I—/ bo-'de:/ pox - wdV
J By J By J By

* Apply integration by parts and the divergence theorem in the first
integral

P'Ilo'lL?dS+/ bo-wdV = P-V'de—I—/ pox - wdV
J OBo J B J Bo J By

* Since w = 0in the boundary and the applied traction ¢, — p,, atthe
traction boundary

/ fo-u1d5+/ bo - wdV = P-deV—l—/ pox - wdV
J 8¢ Bo J By J Bo J Bp



Weak form: principle of virtual power

* |t can also be deduced from the principle of virtual work

/ t—o-wds—l—/ bo - wdV
J 8¢ By J By

P-VwdV

/ pox - wdV
J By

VWV of external loads

J/ Bo
VW of boundary VW of volumetric VW of internal
loads loads (elastic) forces

* Usually it is written as the equilibrium equation

VWV of inertial
forces

W™ (w,x) — W™ (w,x) + W(w,x) =0



Discretization with FEM

* As standard, approximate unknown nodal position and test functions

xh(X) = Z N9 (&) x” wi(X) = Z NY(£) w®

acf2;

* And replacing in the weak form

Z/ 0\'0\'bdv) W +Z/ P(N%% VO\'bdv) b
(c
—Z/ toN? dS Cw +Z/ bo\'bdl w”
B2

1\.[5& + fim(X) = leoxt




Solving the system of equations

 Static problems (no need to compute matrix M)
* Solve the matrix equations (direct solver vs. iterative solver)

Kx=1f1

* Dynamic problems: the discretised equations are coupled with a set of
ODEs

* Select a time step At

* Adopt and algorithm to advance in discrete time steps:
Newmark scheme

 Stability and accuracy need to be considered

Mx+Kx=f{



Elasticity



Linear Elasticity

What does linear elastic mean?

'l

* An elastic material wants to resist a change in shape. © <&

It returns to its original shape.

* Linear relationship between how hard you squish
it and how much it deforms (stress and strain).

Do real materials that we care about actually have these properties!?

* In general, solids like plastic and metal behave
more or less as linear elastic materials unless
you really bend or squish them.

 Above some threshold amount of force, materials
become both nonlinear and non-elastic. After
that point, materials will usually permanently
bend and eventually crack.

Yield

Toughness

Fracture

Strain




Isotropic Elasticity

» Elasticity: one-to-one relation between stress and deformation.

* [sotropic elasticity: the behaviour is independent of the orientation.
The elasticity tensor C does not depend on the basis.

!
Cijit = Cijik

S — CE Sij =(Cijkl?_‘3kl Cijkl = Cjikt

— (“1 - ("1
igkl = Uklig

C is a 4th order tensor with 81 parameters but.. applying
symmetries it reduces to 21 parameters

Recall: we use total Lagrangian formulation, where 2PK $ and the G-L strain
E are the natural choice. It’s easy to recover |PK P from:

F.S=P’



Isotropic elasticity

In the case of isotropic elasticity, the elasticity tensor C is constant and
solely characterised by a pair of elastic moduli, e.g., two Lame’s constants

A and
C=A®I1+2ul

Ci,jkl = /\(Si,y‘du + [ (("z‘kdﬂ + (5,—,(5]-;(,‘)
Lameé equations

vE - E
A+ -20) F7 20+

S = Ar(E)I + 2uE A=

Usually the following parameters are used

G = Shear modulus

(‘3/\ = 2/1)
A -1 L

A
V= 20\ + 1) Poisson

M
b = Young modulus C=

OO®T OO O
O R OO0 O
T OO0 O




Young modulus and poisson

Poisson effect: when a material is compressed in one direction, it usually
tends to expand in the other two perpendicular directions:.

The limits of the Poisson ratio are:

* V=0:no influence of lateral stresses to the strain, no lateral contraction (cork)

* V=0.5:incompressible material, means there is no volume change under loads
(rubber)

* Vv=0.2-0.3: typical values for linear elastic material (ceramics and metals)

Material Youngs

Young's modulus, which is also Modulus
known as the elastic modulus, is a /GPa

mechanical property of linear elastic Mild Steel 210
solid materials. It defines the Copper 120
relationship between stress and Bone 18
strain in a material. Plastic | -
Rubber |  0.02




Simply supported beam

Supported bridges and high way road.

e E=2letl|]
e v=0.3
* dimensions:
e Real: |00 x50 x 2
* Model: 50 x 50 x 2 (symmetry BC)

* pressure = 0.5

L--—- (l

RRRRR RN
%/1 %/,
@

* ’

. -
T JOINT




Simply supported beam
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Full barrel fuselage

E=70000, v=0.3

Isotropic material behaviour

Unixaial compression loading




Full barrel fuselage: postbuckling behaviour

Buckling is a mathematical instability,
leading to a failure mode. It is caused
by a bifurcation in the solution to
the equations of static equilibrium.
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2000
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Hyperelasticity



Hyperelasticity

Definition and properties

* Materials that exhibit elastic behaviour through large strains to 300%.
* Stress is a function of current total strain (independent of history).

* Stress-strain relationship derives from a strain energy density function
(elastic potential) W(E) instead of a constant factor , such that

S

~ OW(E)
OE

Typical measurements are
c 4 often performed for G A  Gradient often not in scale

example until 300 % strain with elastomer matenal,
e.g. E;<<E &

A/ypical strains are

just0.1...0.5%

-

>

£=300 % €
Elastomer material behavior (like brittle steel or ceramic)

) . . £
Linear elastic matenal



Hyperelasticity

Generally comes with incompressibility (J=1)

* The volume preserves during large deformation.

* Mixed formulation: completely incompressible hyperelasticity (pressure

p is additional unknown).

* Penalty formulation: nearly incompressible hyperelasticity (linearization).

Typical materials

* Rubber material
* Plastic - particularly foams

* Biological tissues

composites

AN

"

\

\

Engineering
ceramics & metals

plastics

elastomers




Constitutive models in hyperelasticity

 The description of the strain energy density W is much more

complex, compared to linear elastic material, where S is a linear
function of E.

* |n general W is a function of the stretch invariants W=f(l,,l,,1s).

N N
~\i ~\ 7 1 2k
W=>C,(1,-3)(1,-3) +/\Z—;Fk(‘1_1) :

i+ j=1

Classical hyper elastic models

* Neo-hookean W = Cio(I; — 3) + %(J _1)?

Mooney-Rivlin  w — ¢y0(1; —3) + Cor (I — 3) + %(J —1)*

* Holzapfel a a af > K |
W= —eb=3 _ (1 = 3) 4 L febrUa=D? _ 1} 4 = (7 —1)?
2b ATV -



What is the right model to describe my material?

* [f the strain is below apron. 5-10%, for many applications the simple

Hooke’s law is accurate enough to describe hyperelastic materials, so
the time consuming nonlinear analysis can be replaced by a very
quick linear one.

If the strain becomes bigger but we don’t have many test data, it is a
good idea to start as a rough estimate with the most simple model,
Neo-hookean, where the two necessary material contacts can be
obtained from the initial shear and initial bulk modulus.

K is the bulk modulus and

represents the ratio between
K = 3(1 — 2v) uniform stress and uniform
strain (~inverse of
compressibility)

Cio =

N | Q
e

If more tests are available, we select the best suitable model...



Neo-hookean material: uniaxial test

x10°

* Uniaxial Measured data
sk ® Equibiaxial Measured data

— Uniaxial test, estimated from both sets of data
- Equibiaxial test, estimated from both sets of data W

45+

Neo-Hookean

3.5}

Nominal Stress (Pa)

-
o'.
-

1 2 3 4 5 6 7
Stretch

Fitting Measured Data to Different Hyperelastic Material Models
Chandan Kumar | June 24,2015 (COMSOL)



Neo-hookean material: Cook’s membrane test

Soft material (~biological tissue): E =200 v=0.35

Tav Aty

SUNYAVAVAVAVAVAYL
N SN
N NSNS
N 1N NI\

TR ATATAYATATATAAY

a0 -=nNnwWaL

Robust numerical calculation of tangent moduli at finite strains based on complex-
step derivative approximation and its application to localization analysis
Masato Tanaka, Masaki Fujikawa, Daniel Balzani,Jorg Schroder



HGO material: Cardiac model

DB: downsampledST 1.ensi.case
Cycle: 0 Time:0.006407

Pseudocolor
Var. INTRA
30.00

-7.500

-.120.0
Max: 2267
Mir: -88.11

Mesh
Var. mesh

user: rutharis
ThuJdu 511:47:12 2012




Composite materials



Composite materials

B Carbon laminate ' Skl g
Carbon sandwich 10%
[l Fiberglass Titanium
i 15% Composites
B Aluminum o
[] Aluminunvsteel/titanium pylons Aluminum
20%

Multiple Composite Materials




Composite materials

Why composite laminates!?
* High strength/stiffness and light weight
* Excellent Thermal/Erosion Resistance
* Anisotropic Mechanical/Thermal Behavior

* Design optimization

The deficiencies in the models representing mechanical behaviour of
composites have tremendous effects on the costs of composite structures

low to improve constitutive models?

* Simulate different failure scenarios where the analytical are no
|Ongel" Vahd Delamination Matrix crack

= N (e



Composite materials

Fiber Matrix

Composite

- Glass

- SiC - Epoxy/Plastic Fiber reinforced
- Aramid/ - Ceramic plastic composite
Kevlar - Metal - GFRP
- Carbon - CFRP
Plies - Laminate
/-_'-_'-_'—_'-_’—_'-_'—_'—_'-_'-_’-_y - Woven
I _’_'_‘_‘_‘_’_’_‘_’_'_‘_‘_"_’000 Laminate
m/é\ga'a’a'a’a' 7
AN
| ""?-\\K\ii-" 4 Fiber
PMzztrix

* The composite is a system which consists of fibres in a resin or similar
medium (usually called the matrix).

* The important strength and stiffness characteristic are provided by the high
strength fibres.

* The fibres are usually shown as a schematic, in practice they will be very
small diameter and scattered though the matrix in a ply.

* |tis important to consider both the fibres and the matrix in the material
stiffness and strength considerations.



Composite materials: damage and failure



Damage models

In elastic materials, the mechanical response of a material is described
by the relation =
o(€)

-

For more involved materials, such as composites, that may develop
damage, we need to define a constitutive model with internal variables

o(e,D)
The simplest damage model is the scalar damage model:

o= (1-d)Ce Oy = (l—d)Cykzgkz

The internal variables track the material state. The determination of a
reliable set of internal variables is a critical point in any constitutive model.

Typical internal variables are: temperature, kinematics, state variables.

* Fro a damage model it is necessary to define the damage onset and the
damage evolution (damage laws).



Damage models

Failure process

Source: Jamison RD et al.: Characterization and ahélysis of daniage mechanisms in tension—

tension fatigue of graphite/epoxy laminates. Effects of Defects in Composite Matenals.
ASTM STP 836, 1984. p. 21-55.

1. Matrix Cracking 3. Delamination

5. Fracture
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Matrix cracking

(902, transversal) (02, longitudinal)

displacement

Clamped
end 7 Symmetry XY-plane
Applied
displacement
end

Defect element

B 902 elements

B 092elements

& Free-edge XY-plane



Matrix cracking

Transverse cracking scheme: onset and accumulation up to the final failure

STAT2
1.000e+00

HERRRRR

0.000e+00




Matrix cracking

Transverse cracking scheme: onset and accumulation up to the final failure




Matrix cracking

Transverse cracking scheme: onset and accumulation up to the final failure

STAT2
1.000e+00

HERRRR

0.000e+00




Matrix cracking

assesssassssmssaanas)
feassssnsnssssasnnse
S assssssnansnasns)

e

se s s s sssss’a s
jess s sssnnnnacs

Figure 3. Cross-ply laminate with transverse matrix cracks in 90-layer.

[Bailey, J.E and Parvizi, A. (1981). On fiber debonding Effects and the Mechanisms of Transverse-Ply
Failure in Cross-Ply Laminates ofGlass/Fiber/Themroset Composites, J. mat. Sci., 16: 649-659]



Fracture



Four points shear test

Linear isotropic material (concrete)

E =200M Pa
v =20.3

0.09P 0.91P

2
j; w
=

Fixed support
(Four-point shear test (FPST) sample>

wur 08 [

Fixed support




Four points shear test

=2.511e+8




Four points shear test

Crack evolution

Step 1. Crack initiation Step 2. Maximum load

Step 3. Crack propagation Step 4. Final loading




Four points shear test

Stress evolution

Step 1. Crack initiation Step 2. Maximum load

-1.2e+8 ' 1.2e+8 -1.2e+8 1.2e+8

Step 3. Crack propagation Step 4. Final loading

-1.2e+8 1.2e+8 -1.2e+8 1.2e+8



Four points shear test

Analysis Mesh Convergence

- Coarse mesh: 25.000 elements
- Medium mesh: 200.000 elements

- Fine mesh: 1.600.000 elements

360

(U8
S
S
1
/

(N

S~

-
l

180
120

Effective load P (KN)
AN
-

04

Mesh resolution:

— = = (Coarse
- = Medium
— Fine

0 0.04 0.08 0.12 0.16 0.20
Crack mouth sliding 6 (mm)

Sample y-coord (mm)

100 F—————-—=-C-=- A -]
1o
1o
80 T+ 4 .
60 T .
40 + Mesh resolution. 4
— = = (Coarse
20 Tt — = Medium -
| — F1ne
Uy Sk ek B e b e
160 180 200 220 240 260

Sample x-coord (mm)



XFEM

Numerical method: Extended Finite Element Method (XFEM)

__SLEND

T D
o, |

Qom
N
=

- Method adapted to the FE code
- Non-depending mesh
- Crack propagation and simulation heterogeneous materials



XFEM

* Enrichment of standard FEM solution: approximation to account for
discontinuities

u(X) =) NYX)u’l+) NYX)y(X)a

acl acl

u'(X) =) NUX)[u"+{H(X) - H(X")}a"]
acl

* Shifted Heaviside functions improve scalability

NX)HX) N(XH(X)
|

D <0

(Standard FE shape functions ) < FE enrichment functions by heaviside )




XFEM

e FEM formulation

P . V()’de() = /

/ PO - W dVpy +
Bo Lo

'E()-wdS()-F/ bg - w dVj
B() BO

* Approximation for the test function

w'(X) =) N(X)w’+ ) NX){H(X)-H(X"}3"

bel bel.

* Replacing and discretising, in matrix form we obtain the system:

Mg MEY { i’ } L f fat
b b - b = b
Mgu' Mga' | | & finte fesit,a

— —




Cohesive zone model

* Cohesive zone elements do not represent any physical material, but
describe the cohesive forces which occur when material elements are
being pulled apart. Therefore cohesive zone elements are placed
between continuum (bulk) elements.

* When damage growth occurs these cohesive zone elements open in
order to simulate the crack initiation crack growth.

* The direction of the crack propagation strongly depends on the
presence (or absence) of cohesive zone elements (mesh dependence).




Cohesive zone model

Modes of Failure

v

Mode I: Mode II: Mode III:
Opening In-plane shear Out-of-plane shear

Work done in collaboration with IMDEA materials
and Oxford University



Open hole test

* Carbon fiber/epoxy resin laminate with sequence [90/+45/-45/90/0]s
* Each ply of the laminate has transversely isotropic properties
* Intra-laminar: XFEM + Extrinsic CZM

* Inter-laminar: Intrinsic CZM

Cohesive
elements
between

plies -

Stack of plies
with different
fiber

orientations

Work done by BSC in collaboration with IMDEA materials and Oxford University



Open hole test

Experimental sample in the initial state Experimental sample after the tensile test

Numerical model used for simulations Numerical model after the simulation

Deformation map at 0.8% strain, 1.2% strain and |.3% (fractured specimen)



Open hole test

Matrix cracks for plies 1,2,3,4 and 5 at 90% failure load




Open hole test

Delamination at 90% failure load

Simulation

St Aidiauy

<z Adaaun




Open hole test

Stress-strain curves for
experimental tests and

simulation

Force (N)

900
800
700
600
500
400
300
200
100

0

Stress (MPa)

500

400

300

200

100

—— 50% load
—— 75% load
—— 90% load
——up to failure

simulation

02 04 06 08 1 12 14

Strain

1K elems

= 10K elems
100K elems

s 1M elems

0 002004 006 008 0.1 0.12 014 0.16 0.2 0.24 0.28 0.32

Crack mouth opening (mm)

1072



Composite fuselage panel

\ ~
Section 19
g
.
j3————|
Fuselage barrels Fuselage panels

Radius: 1978mm from the outer
skin surface

Figure 1 Overview of the panel with its parts; skin (yellow). stiffeners (red), reinforcing plies (blue).
potting (gold) and aluminum frames and clips (green-grey).



Composite fuselage panel

DISPL Magnitude
0.52—:

:04

Compressive load

400
3%0 w— Force FE

300
gZSO
200
L
100

a0
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Composite fuselage panel

e N
L
HO

B WPy

nbLdoNwnae?

OOrHA

Fuselage panel under compression after Force-displacement and out-of-plane deformation

impact test of curved fuselage panel

SARISTU project (ICL)
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Stress and strain measures

Box 3.1
Definition of Stress Measures
n
. df
FA1f
dr,—" \ p df
Q, Q
reference current
configuration configuration
Cauchy stress: n-odl =df = tdl’ 34.1)
Nomunal stress: ng -Pdl, =df = tydl, (342)
2nd Piola-Kirchhoff stress: ng-Sdlj _Fldf=-F"! todI} (343)
df = tdl’ =t dl’, (344

For solid mechanics applications, it is instructive to directly develop the
conservation equations in terms of the Lagrangian measures of stress and strain
in the reference configuration ( P(F) and E).



