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Our climate Is changing rapidly

Annual mean 2m temperature
Rank of year 2015 (reference: 1979-2015)
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The need for high -quality observations
has never been as pressing asit is today

Climate is changing rapidly
but parts of our planet remain largely unexplored

Internal variability is large and underlying
mechanismsare not completely understood
e.g. Deseret al., J. Clim 2015

Model predictions/projections remain uncertain
Reliable observations are crucial for model evaluation
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model_resolution.html

http://eo.ucar.edu/staff/rrussell/climate/modeling/climate

The classicalapproach of evaluation:
severalmodels for one observation




The classicalapproach of evaluation:
severalmodels for one observation

Metric of
performance
(e.g. correlation)
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Seee.g. Reichlerand Kim, BAMS 2008



Ingthe paradigm: several
observations for one model
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« Better observations yield better
forecast verification scores»

1. Intuition » 2. Formalization » 3. Confirmation
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If metrics of performance (e.g., correlation,
RMSE) areappropriate tools to reflect the
guality of a modelling/forecast system,

Reichlerand Kim, BAMS, 2008 (CMIP3, CMIP5)
Scaifeet al., GRL, 2014 (NAO;sampling)
Massonnet et al., The Cryosph, 2012 Geaice)
Msadek et al., GRL, 2014 (seaice)

then, they can also reveal the underlying
guality of an observational dataset.

Thisis because metrics of performance are
symmetric from a mathematical point of view.
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« Better observations yield better
forecast verification scores»

» 2. Formalization »
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A signal-plus-noise toy model

Interannual

variability N
TRUTH X, =€ e ~N(0, a.) ﬂVATWMV
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1985 1995 2005 2015

[Model from Weigel et al., QIRMS2008. Seealso Siegert et al., 2015]



A signal-plus-noise toy model

Interannual

variability N

TRUTH X, =€ € ~ N((), o) ﬂVATWMV
Interannual  Measurement and

. variability representativity error -
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(\ll1—9‘85 l 19.‘95 I 2605 I 2015

< Interannual

Model forecast error (physics, initial conditions,
resolution ) + irreducible error (atmosphere )

MODEL \Xf = —I— ne + Nm N ~ N(O; Uf); Nm ~ N(O, Um)
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[Model from Weigel et al., QIRMS$2008. Seealso Siegert et al., 2015]

variability

All error terms are assumed to be uncorrelated
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In this very simple paradigm, model and
observational errors play interchangeable roles

p(Xo, Xf) = 1 If error statistics are known, the

\/(1 4 ) ( @) dependence can be predicted

N
-

Correlation increases when

- Model explains more variability,

Correlation

-  Model error decreases <«

- Climate signal is stronger,

- Observational error decreases <«——
Signal-to-noise ratio obs



« Better observations yield better
forecast verification scores»

> » 3. Confirmation
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Seasonalforecasts of summer
seasurface temperature

CanCM3/4, MPFESML/M/HR, CNRM, ECEARTH (3 versions)

11 models . . .

10 members  Cilil Loiit LLLlL Ll Lttt LniiL Ll rttin vt ey v

4-month forecastsinitialized in May

440 forecasts (hot independent from each other)

Nina3.4 region

ESACCI ERAInt ERSST HadISST ERSST4

5 observational datasets for verification

(( — (not independent from each other either)
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The choice of the validation product
has asystematicimpact on correlations

Correlation when using
ERSSTfor validation
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Skill of August forecast of SST (19932009)
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The most advanced product yields on
average higher skill to the forecasts

440 seasonal forecasts of Nino3.4 SST

[ TN (+0.05) ESA-CCI
[ (+0.04) ERAInt
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(+0.01) ERSST4
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Suchan extreme result is unlikely
to have occurred by chance

1. Bootstrapping

- Synthetic data is generated from the known
sample covariance matrix of the data that we
modify so that, for each forecast, correlations are
the same for all observations (our null hypothesis)

- With 10,000 trials, aresult as
extreme as the one we have
happens ~1.2% of the time




Suchan extreme result is unlikely
to have occurred by chance

1. Bootstrapping 2. Parametric test
[Steiger et al., 1981] _ o
) Synthetic data is generated from the known (the test detects changes in correlation in

presenceof non-independent samples)

sample covariance matrix of the data that we
modify so that, for each forecast, correlations are p-value of 110 Steiger tests to

the same for all observations (our null hypothesis) detect increase of correlation from
ERSSTI¢west) to ESA fighest)

- With 10,000 trials, aresult as 2 -

extreme as the one we have

happens ~1.2% of the time

~85% of the

2 forecasts have
- p-value< 15%
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The result is robust when using an
alternative metric of verification: RMSE

440 seasonal forecasts of Nino3.4 SST

[T TN (-0.04) ESA-CCI
| [T (-0.04) ERAInt
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The test was repeated for
another test case:seaice

9 models x 10 members x 4 forecast times = 360 forecasts (ref. 1993-2008)
Initialization month: May

Without detrending With detrending
[T (+0.02) OSI-SAF OSI-SAF
[T T (+0.02) ESA-CCI ESA-CCI
[T T (+-0.12) HadISST HadISST
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