www.bsc.es

BSC BSC Barcel Superc Center Centro N

Barcelona Supercomputing Center Centro Nacional de Supercomputación

"DPETNA"

Dynamics and Predictability of the ENSO teleconnection to the Tropical North Atlantic

MSCA-IF-EF 655339

Revisiting the ENSO teleconnection to the tropical North Atlantic: observations and CNRM-CM5 simulations

Barcelona Supercomputing Center Centro Nacional de Supercomputación

ENSO-TNA teleconnection

Lee et al. (2008 GRL)

ENSO-TNA teleconnection

60N DJF (0/1 401 20N EC 205 405 60W 60E 120E 120W 180 60N 40N 201 EQ 20S 40S 120E 60E 180 120W 60W -0.4-0.80.4 0.8 1.2

Alexander et al. (2002 JCLIM)

surface processes (AGCM-ML model ok!):
weakened trades -> reduced evaporation ->
 positive SST [WES feedback]

- extratropical wavetrain, weakening trades

e.g. Enfield and Mayer (1997 JGR)

- atmospheric bridge, weakening trades

e.g. Klein et al. (1999 JCLIM)

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Barcelona Supercomputing Center Centro Nacional de Supercomputación

ENSO-TNA teleconnection

only persisting ENSO events impact TNA-SST

Lee et al. (2008 GRL)

ENSO-TNA teleconnection

DPETNA

only persisting ENSO events impact TNA-SST

Lee et al. (2008 GRL)

Ν

EXCELENCIA SEVERO OCHOA

Barcelona Supercomputing

Centro Nacional de Supercomputación

Center

BSC

ENSO-TNA teleconnection

 4th potential mechanism: remote Gilltype response in the tropical Atlantic, which is baroclinic with height, whereby modulating the strength of the trade winds

DeWeaver and Nigam (2002, 2004 JCLIM)

FIG. 7. Mass-weighted vertical average of residually diagnosed diabatic heating anomalies

DeWeaver and Nigam (2002 JCLIM)

Nigam et al. (2000 JCLIM)

EXCELENCIA. SEVERO OCHOA

Barcelona Supercomputing

Centro Nacional de Supercomputación

Center

BSC

Niño3.4 (djf) x SST/wind-10m (jfm)

Niño3.4 (djf) x SST/wind-10m (fma)

Niño3.4 (djf) x SST/wind-10m (mam)

Niño3.4 (djf) x OT[5N25N] (jfm)

Niño3.4 (djf) x OT[5N25N] (fma)

Niño3.4 (djf) x OT[5N25N] (mam)

10

-0.45-0.3-0.15 0.15 0.3 0.45 0.6 0.75 0.9 1.05 1.2

-3-2.5-2-1.5-1-0.5 0.5 1 1.5 2 2.5 3 3.5

11

Niño3.4 (djf) x rotational-0.21 (fma)

Niño3.4 (djf) x rotational-0.21 (mam)

5 6

7

-7 -6 -5 -4 -3 -2 -1 1 2 3 4

Niño3.4 (djf) x rotational-0.85 (jfm)

Niño3.4 (djf) x rotational-0.85 (fma)

Niño3.4 (djf) x rotational-0.85 (mam)

DPETNA Niño3.4 (djf) x LHF (mam) Niño3.4 (djf) x SHF (mam)

Niño3.4 (djf) x SWR (mam)

Niño3.4 (djf) x LWR (mam)

-12 -9 -6 -3 0 3 6 9 12

Niño3.4 (djf) x SST (djf)

Niño3.4 (djf) x SST (jfm)

Niño3.4 (djf) x SST (fma)

(i) continuous atmospheric forcing due to the remote Gill-type response

Niño3.4 (djf) x SST (mam)

(ii) but, why the remote impact on SSTs is largest in MAM vs DJF ?

ERSST

-0.45-0.3-0.15 0.15 0.3 0.45 0.6 0.75 0.9 1.05 1.2

-0.45-0.3-0.15 0.15 0.3 0.45 0.6 0.75 0.9 1.05 1.2

clim wind-10m / stdev SST (djf)

clim wind-10m / stdev SST (mam)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

stdev SST (mam-djf)

HadISST

-0.45-0.3-0.15 0.15 0.3 0.45 0.6 0.75 0.9 1.05 1.2

-0.45-0.3-0.15 0.15 0.3 0.45 0.6 0.75 0.9 1.05 1.2

clim wind-10m / stdev SST (djf)

clim wind-10m / stdev SST (mam)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

stdev SST (mam-djf)

5-member ensemble sensitivity experiment with CNRM-CM5 prescribing HadISST anomalies over the tropical Pacific (CNRM-NUDG);

compared to 5 members from the historical+rcp4.5 simulations (CNRM-HIST)

Douville et al. (2015 GRL)

obs-Nino3.4 (djf) x SST/wind CNRM-NUDG (fma)

-0.4-0.35-0.3-0.25-0.2-0.15-0.1-0.050.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-0.4-0.35-0.3-0.25-0.2-0.15-0.1-0.050.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

21

1.2

-0.6 -0.45 -0.3 -0.15 0.15 0.3 0.45 0.6 0.75 0.9 1.05

-1.5

-1

-0.5

0.5

1

1.5

2

2.5

EO

- The observational study describes a fourth potential mechanism to explain the ENSO teleconnection to the tropical North Atlantic in boreal spring. The continuous ENSO-induced atmospheric forcing in the tropical Atlantic via the remote Gill-type response plus the springtime increase in SST variance over the TNA region may conceivably be underlying the apparent oneseason lagged ENSO-TNA teleconnection.
- Both processes appear to be at play in CNRM-NUDG, which also shows the ENSO-TNA teleconnection peaking in boreal spring. The contribution of the (overestimated) subtropical atmospheric forcing still to be quantified. Prescribing the observed timing of ENSO (CNRM-NUDG) increase model SST variance in the equatorial Atlantic, which is unrealistic, and over the TNA region – getting closer to observations.

supplementary slides

DJF El Niño

Chiang and Sobel (2002 JCLIM)

Niño3.4 (djf) x T300 (djf)

Niño3.4 (djf) x T300 (jfm)

[consistent with Kelvin wave]

Niño3.4 (djf) x T300 (fma)

Niño3.4 (djf) x T300 (mam)

YEARS

