www.bsc.es

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Impact of ocean resolution and initialisation in climate seasonal predictions

Eleftheria Exarchou (on behalf of F. J. Doblas Reyes) BSC, Climate Prediction Group, Earth Sciences Department, Barcelona, Spain

Leon, 21st September 2016

BSC Earth Sciences Department

ing Excelencia Severo Ochoa

Nacional de Supercomputación

<u>What</u>

Environmental modelling and forecasting

<u>How</u>

Develop a capability to model air quality processes from urban to global and the impacts on weather, health and ecosystems

Implement climate prediction system for subseasonal-to-decadal climate prediction

Develop user-oriented services that favour both technology transfer and adaptation

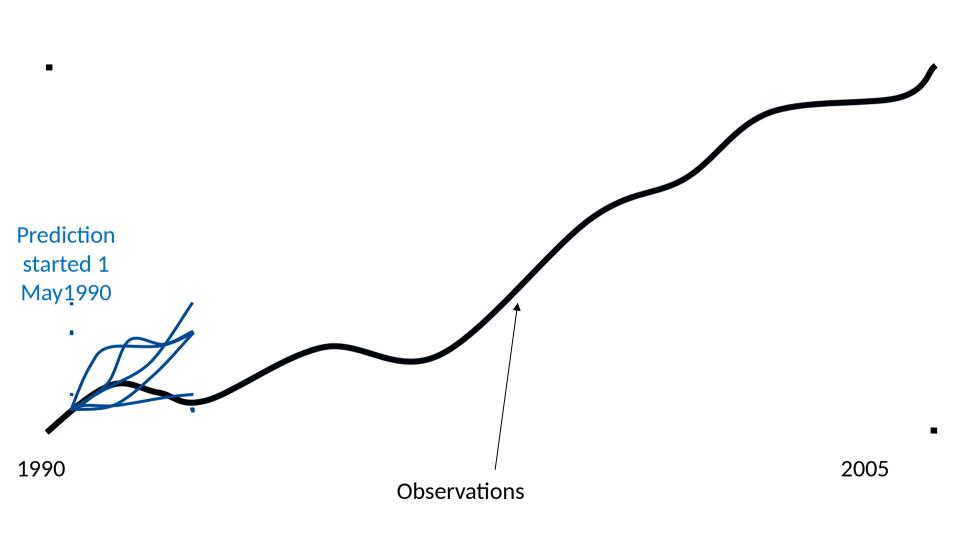
Use cutting-edge HPC and Big Data technologies for the efficiency and user-friendliness of Earth system models

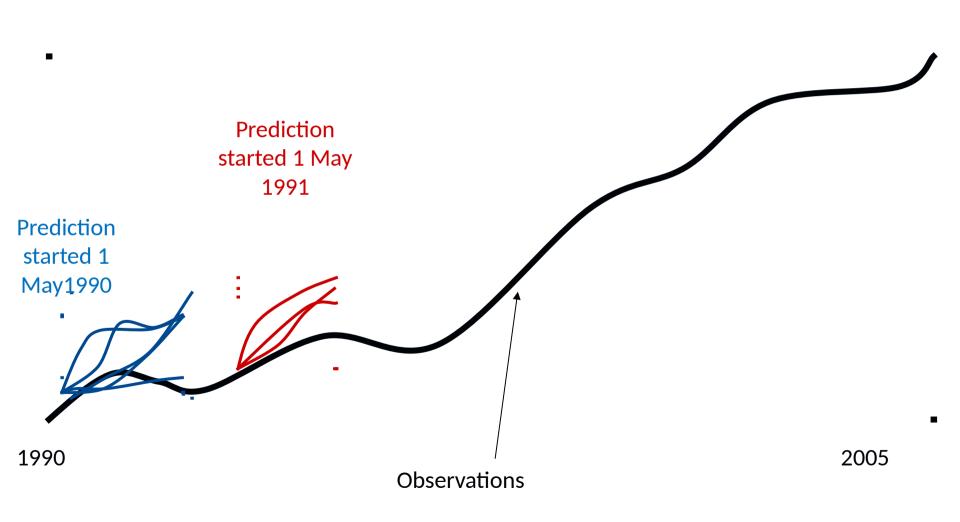
<u>Why</u>

Our strength research operations services ...

... high resolution ...

Between initial-value problems (weather forecasting) and multidecadal to century projections as a forced boundary condition problem.


Weather forecasts	Subseasonal to seasonal forecasts (2 weeks-18 months)	Decadal forecasts (18 months-30 years)	Climate-change projections
Initial-va	lue driven		Time
		Bound	dary-condition driven


- Memory on interannual to centennial timescales in the *ocean*
- Memory on seasonal to interannual timescales in the sea ice and land surface
- **External radiative forcings** (solar activity, greenhouse gases, aerosols)

Climate prediction hindcasts

Climate prediction hindcasts

Prediction

started 1 May

1991

Focus on statistics over forecast periods (e.g. months 2-4 for seasonal)

... every year ...

1990

Prediction

started 1

May1990

Prediction

started

1 May 1992

2005

EXCELENCIA SEVERO OCHOA

Barcelona

Prediction

started 1

May 2005

Center

BSC

Supercomputing

Centro Nacional de Supercomputación

Observations

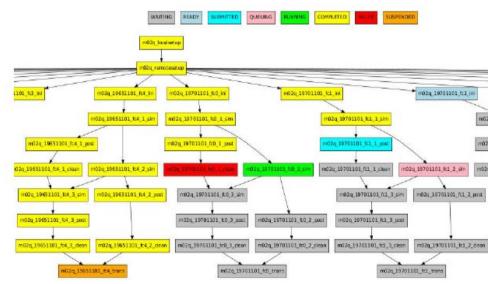
Running climate predictions

Climate prediction allows running jobs independently and simultaneously by wrapping together ensemble members for different start does.

A workflow manager is required.

EC-Earth3 at rendgren, PDC								
Number of Start Dates			5	10	10	20		
Number of Members		(5	5	10	10		
Number of Independent Simulations		1	25	50	100	200		
T159-ORCA1	Cores	144	3600	7200	14400	28800		
	Wall-clock Time (Hours) / year	6.5	5	5	5	5		
TI39-ORCAT	CPU Time (Hours) / year		18000	36000	72000	144000		
	Output Size (GB) / year	10,80	480	960	1920	3840		
T255-ORCA1	Cores	360	9000	18000	36000	72000		
	Wall-clock Time (Hours) / year	5	5	> 5	5	5		
	CPU Time (Hours) / year	1800	45000	90000	180000	360000		
	Output Size (GB) / year	19,20	5184	10.68	20736	41472		
T799-ORCA025	Cores	1104	27600	55200	10400	220800		
	Wall-clock Time (Hours) / year	40	40	40	40	40		
	CPU Time (Hours) / year	44160	1104000	2208000	4416000	8832000		
	Output Size (GB) / year	256,80	6420	12840	25680	51360		

Workflow management - Autosubmit



What is Autosubmit: a python-based tool to create, manage and monitor experiments. It has support for experiments running in more than one HPC and for different workflow configurations

Why Autosubmit is needed:

- Automatisation: No user intervention is needed in submission to machines and dependencies between jobs.
- Data provenance: Assigns unique identifiers for each experiment, model version, experiment configuration etc.
- Failure tolerance: Automatic retrials in case of corrupted or missing data.
- Versatility: Runs different models in different HPC platforms

Workflow of an experiment monitored with Autosubmit: Yellow = completed Red = failed Green = running Blue = submitted

Domingo Manubens, Javier Vegas (BSC)

Modelling framework

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Standard resolution T255ORCA1

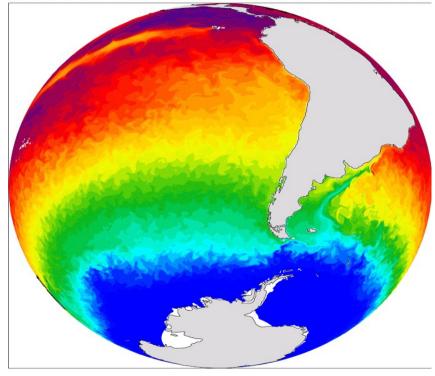
- ~ 80 km atmosphere
- ~ 100 km ocean

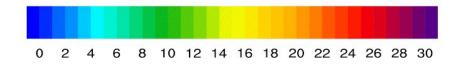
High-resolution T511ORCA0.25 ~ 40 km atmosphere

~ 25 km ocean

Now testing T1279ORCA0.12 ~ 16 km atmosphere

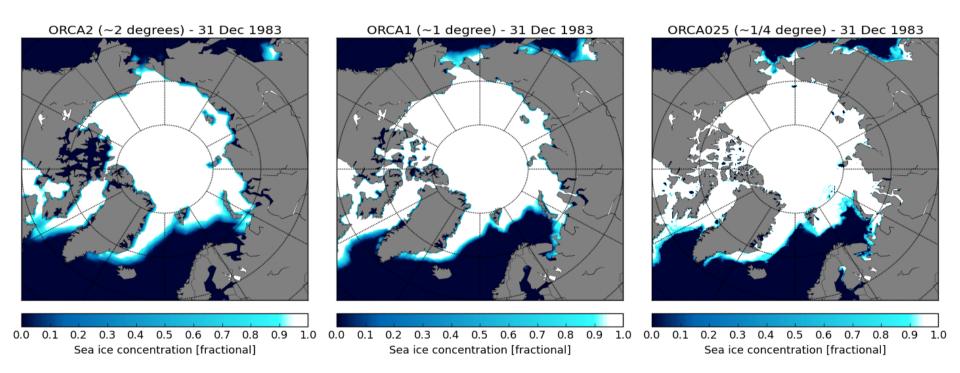
~ 12 km ocean


High-resolution forecasting



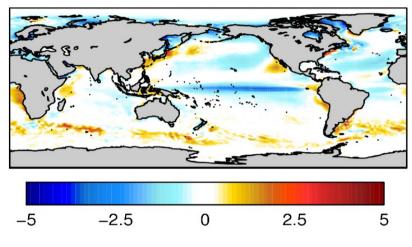
In high resolution more ocean dynamics are resolved

Sea surface temperature field in a high resolution run

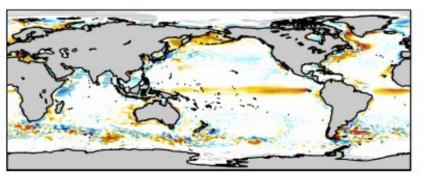

SST, ORCA025 9 Jun

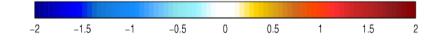
In high resolution smaller-scale processes in sea ice edges and in marginal seas are better represented

December sea ice concentration (fractional) for three different horizontal resolutions


F. Massonet (BSC)

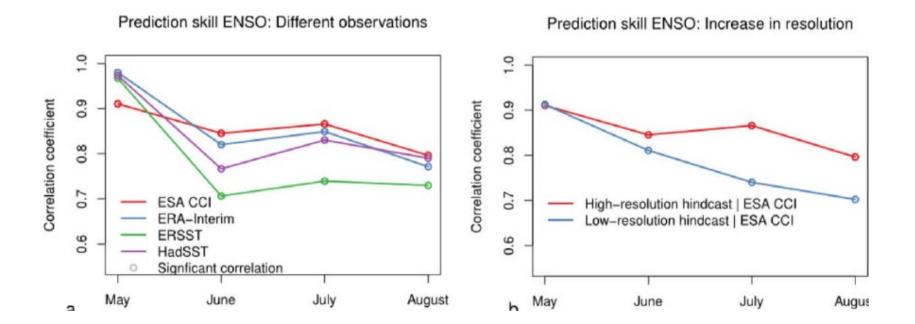
High-resolution forecasting




In high resolution model biases in sea surface temperature are reduced

Mean model biases in sea surface temperatures in June-July- August with respect to ESA in the standard resolution experiment (top). Differences in high resolution minus standard resolution temperatures (bottom).

c) HRes-SRes: SST

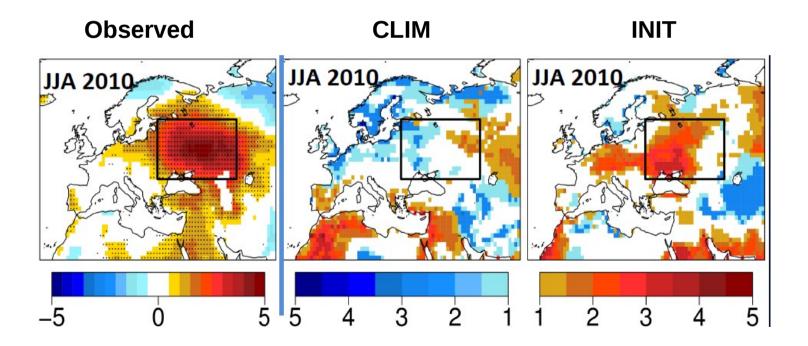


High-resolution forecasting

High horizontal resolution improves ENSO predictions. Observational uncertainty similar magnitude as improvements.

Impact of ocean initialization

Initialization from different observational estimates impacts ENSO prediction


1.0 0.9 **Correlation coefficient** 0.8 0.7 റ a007 vs ERA-Interim 0.6 a007 vs ERSST a00p vs HadISST m02j vs ERA-Interim 0.5 m02j vs ERSST m02j vs HadlSST 0.4 May June July August

EC-Earth3 prediction skill Nino3.4 SST

Month

Seasonal prediction of Russian heat wave initializing observed landsurface (INIT) conditions and climatological (CLIM) conditions. Land-surface initialisation matters.

BSC Barcelona Supercomputing Center Centro Nacional de Supercomputación

- Improve our forecast systems with better process representation: new parameterizations, higher resolution, better land use estimates, better use of the existing observations, better knowledge of the physical processes, etc
- Increasing model resolution allows for better representation for smaller scale processes, and better resolving of dynamics. It improves model quality and reduces model errors
- Even if more technically challenging and computationally demanding, increasing resolution is essential in future model development
- Increasing resolution is not panacea: other aspects (i.e.better ocean/landsurface initialization) also important for improving forecast quality