

SPECS: Climate Prediction for Climate Services

Francisco J. Doblas-Reyes

SPECS objective and structure

SPECS specs-fp7.eu produced quasi-operational and actionable local climate information with a new generation of reliable European climate forecast

Resolution brings leap forward in skill

Sheen et al. (2017, J. Climate)

Correlation of the ensemble mean precipitation from DePreSys3 (N216-ORCA025).

Increased resolution improves skill

Forecast quality from EC-Earth3.1 seasonal hindcasts (1993-2009, Glorys2v1, ERAInt and ERALand initial conditions). Solid for ESA-CCI and dashed for ERSST.

Blue for high resolution ocean and atmosphere, red for high resolution ocean, black for standard resolution.

— SRes

May start dates

Increased resolution modifies biases

Bias from EC-Earth3.1 seasonal hindcasts (1993-2009, Glorys2v1, ERAInt and ERALand initial conditions).

Improving initialisation

JJA near-surface temperature anomalies in 2010 from ERAInt (left) and odds ratio from experiments with a climatological (centre) and a realistic (right) land-surface initialisation. Results for EC-Earth2.3 started in May with initial conditions from ERAInt, ORAS4 and a sea-ice reconstruction over 1979-2010.

Sensitivity experiments at HR

Correlation of JJA near-surface temperature from EC-Earth3.1 hindcasts started in May over 1993-2009 with climatological (left) and ERA-Land (centre) land-surface initial conditions, and their difference (right).

Hard to detect differences in sensitivity experiments: use of the Steiger test for correlation differences (increased power).

Observational uncertainty

Niño3.4 SST correlation of the ensemble mean for ECMWF System 4 started every May over 1993-2010.

Prediction skill ENSO

Computational efficiency

Speed up of the NEMO3.6 (ORCA025L75) code when switching some parts of the code from double to single precision.

PRIMAVERA: A HR EU concerted effort ((BSC) Barcelona Supercomputing Center

Aims to develop advanced and well-evaluated high-resolution global climate models, capable of simulating and predicting regional climate with unprecedented fidelity (contribution to HiResMIP).

Institution	MO	KNMI BSC	CERFACS	MPI	AWI	CMCC	ECMWF
	NCAS	SMHI CNR					
Model names	MetUM	ECEarth	Arpege	ECHAM	ECHAM	CCESM	IFS
	NEMO	NEMO	NEMO	MPIOM	FESOM	NEMO	NEMO
Atmosph.	60-25km	T255-799	T127-359	T63-255	T63-255	100-25km	T319-799
Res., core							
Atmosph.	10-5km						T1279-2047
Res., FCM							
Oceanic	1/4 0	1/40	1/4	0.4-1/40	1-1/4	1/4	1/4
Res., core					spatially		
					variable		
Oceanic	1/120	1/12°	1/12°	1/10°	1-1/140	(1/16°)	
Res., FCM					spatially		
					Specific humidity at 500 hPa in March N96 (130km) N512 (25km) N1024 (12km)		
		1		·			

0.002

Summary and some thoughts

- **Progress**: increased resolution improves both mean climate and skill for some areas and variables; further improvements require substantial experimentation for the model to be diagnosed at the same level as with the standard resolution configuration.
- Challenges: reference uncertainty, observations at equivalent resolutions, process understanding, leveraging knowledge from other communities (climate modelling and weather forecasting), etc.
- **Technology**: make the most of a context with rapidly evolving technology (heterogeneous nodes, software, mobile data capture, visualisation, storage/compression, computing and storage outsourcing) to reduce the model cost and increase the capability to experiment with expensive configurations.
- Services: who benefits from these expensive efforts?