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ECMWF S4 probabilistic seasonal predictions
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Challenges for the use of climate

Information: Observational uncertainty

Coherence maps of the
10-m wind speed trends
(m/s) in the ERA-Interim,
MERRA-2 and

JRA-55 reanalyses.

Range of the differences
(m/s) between the 10-m
wind speed values
produced by ERA-Interim,
MERRA-2 and

JRA-55 reanalyses.




Challenges for the use of climate

Information: Predictability
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Correlation for 10-m wind speed between the ensemble
mean forecasts from ECMWF S4 and ERA-Interim
reanalysis in winter




Challenges for the use of climate
Information: Biases
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Bias of 10-m wind speed between the ensemble mean
forecasts from ECMWF S4 and ERA-Interim reanalysis in
winter.



Challenges for the use of climate
Information: Biases
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wind farms



Challenges for the use of climate

Information: Blases

ECMWF S4 ERA-Interim

00 05 10 15 20
0 05 10 15 20

|8
|

0 .

[ —
-
v o« I
£ =
-~
®

00 05 10 15 20

00 05 10 15 20

| |I| -

16 -13 -1 -09 -07 -05 -03 -0.1 of1l 03 05 07 09 11 13 15 m/s

00 05 10 15 20
00 05 10 15 20

T ;l !
40 45 50 55 60

00 05 10 15 20

40 50 6.0 70



How to develop useful information?
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Bias-adjustments

Simple bias
correction

| Variability
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Simple bias correction is based on the assumption that both
the reference and forecasted distribution are well
approximated by a Gaussian distribution.

Leung et al. (1999)



Bias-adjustments

Calibration
method
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Variance inflation:

Predictions with the same interannual reference as
the reference dataset

Correction of the ensemble spread.

Von Storch (1999)
Doblas-Reyes et al. (2005)



Bias-adjustments

Quantile
mapping

Vj,i =£,Cdfref_190dffred(xij)

Inver_s e cumulative density Cumulative density function of
function of the reference _

: : the predictions
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Determines for each forecast to which quantile of the
forecast climatology it corresponds, and then maps it to
the corresponding quantile of the observational

climatology.

Themepl et al. (2012)



Impact of bias-adjustments on

skill
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Impact of bias-adjustment on

statistical consistency
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Tailored wind speed predictions

Below normal (%) Normal (%) Above normal (%)
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ECMWF S4 10-m wind speed seasonal forecast for DJF 2015 initialized the 15'of November. The most
likely wind speed category (below-normal, normal or above normal) and its percentage probability to occur
Is shown. White areas show where the probability is less than 40 % and approximately equal for all three
categories. Grey areas show where the climate prediction model doesn’t improve the climatology. 15



Barcelona

~ EXCELENCIA
Supercomputing e
Center OCHOA
Centro Nacional de Supercomputacion

Conclusions

« Methodology to develop useful information for the wind industry

Torralba V., Doblas-Reyes F.J, MacLeod D., Christel I. and Davis M. (2017)

Seasonal climate prediction: a new source of information for the management of
the wind energy resources. Journal of applied meteorology and climatolgoy.

« Three methods of bias correction (which are simple enough to be
understandable for the users) have been used to produce forecasts with
Improved forecast quality

« Calibration method displays better reliability than simple bias
correction and quantile mapping, however in terms of skill the three
methods produce similar results

« Future work will focus on:
- Predictions for specific sites

- Impact model to produce seasonal predictions of wind power capacity
factor



