

Dust Modeling: Challenges and Perspectives

5th International Workshop on Sand and Dust Storms 23-25 October 2017, Istanbul, TURKEY

Dr. Carlos Pérez García-Pando

AXA Professor on Sand and Dust Storms
Head of Atmospheric Composition Group
Department of Earth Sciences
Barcelona Supercomputing Center

Atmospheric aerosol and the dominance of mineral dust

Dust modeling requires the representation of sources, transport and sinks

Dust cycle, effects, feedbacks, scales

Dust emission and friction velocity

Dust storm generation requires:

high wind Wind shear and turbulence Unstable boundary layer

Friction velocity is the key parameter as it expresses wind speed, turbulence and stability

Threshold friction velocity vs particle radius

Dust emission mechanisms

Soil size distribution derived from soil texture

STASGO-FAO database

Vegetation, roughness, soil moisture

Vegetation fraction (MODIS)

Roughness length (ASCAT + PARASOL)

Dry aggregate soil size distribution? Soil crusting?

Roughness control upon dust emission

Feff in drag partition

MODIS frequency of occurrence

Degree of reduction in threshold friction velocity based on roughness

Perez García-Pando et al., in prep

Source mapping: why?

$$S = \left(\frac{z_{\text{max}} - z_i}{z_{\text{max}} - z_{\text{min}}}\right)^5$$

S: probability to have accumulated sediments in the grid cell i of altitude zi

best fit with the sources identified by Prospero et al. 2000

High resolution Natural and anthropogenic dust sources

Ginoux et al. 2012

Current quantification

Perez García-Pando et al., in prep

Major challenge for modeling

Mineralogy!

Challenges

Methods

Remote hyperspectral spectroscopy

VSWIR Spectra of Dust Source Minerals

AVIRIS airborne scenes $0.4-2.5 \mu m$, 224 bands, 10 nm spectral resolution, SNR of ~500:1

Hyperion: satellite hyperspectral sensor 0.4 to 2.5 μ m, 242 spectral bands, 10nm spectral resolution, 30 m spatial with a SNR of ~50:1

Coming soon, e.g., EnMap (~2019)
Germany

EMIT (under review)
NASA, US

Salton Sea and AVIRIS measurements

Emitted size distribution of minerals

Perlwitz et al., 2015a,b Pérez García-Pando et al., 2016 Pérez García-Pando et al., in prep

Meteorogical processes

- Synoptic dust storms (large scale weather systems)
 - Prefrontal winds
 - Postprontal winds
 -
- Mesoscale dust storms
 - Gap flows
 - Haboobs
 - Inversion downbursts
 - Dust devils
 -

Meteorogical processes

Synoptic dust storm

© 2004 EUMETSAT

Haboob (moist convection)

Dust data assimilation and ensemble forecasting

Di Tomaso et al., 2017

AERONET stations and regional domains

Interannual, decadal and long-term trends

Yu et al., 2015

Precipitation history and long term trends CRU3.1 winter rainfall greater Fertile Crescent mean mm/month 20 17 CRU3.1 annual surface temperature greater Fertile Crescent mean deg C 15 14 В 13 PDSI, annual, greater Fertile Crescent mean 1920 1900 1940 1960 1980 2000

Kelley et al., 2015 PNAS

Dust variability in climate models

Connecting dust emission to dynamic vegetation model and land use change

Thank you

carlos.perez@bsc.es