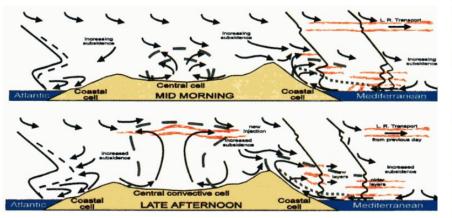


Barcelona Supercomputing Center Centro Nacional de Supercomputación

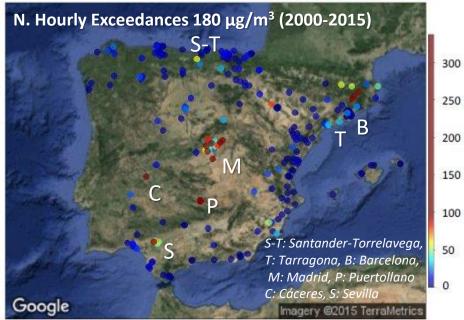
A source apportionment assessment of O_3 in peak summer events over southwestern Europe


<u>María Teresa Pay</u>, Carlos Pérez-García Pando, Marc Guevara, Sergey Napelenok, Xavier Querol

26th GLOREAM Meeting - Berlin (Germany)

28/11/2017

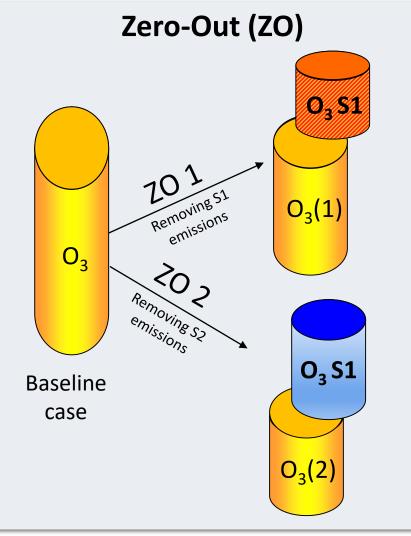
Background and Motivation


O₃ dynamic

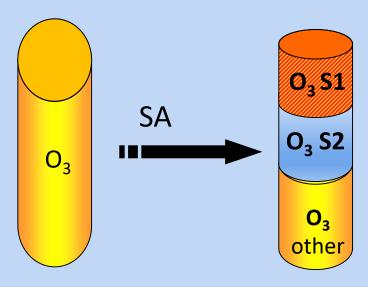
Sources:

Millán et al., 1997;2000, 2014; Gangoiti et al, 2001, 2002, 2006 Toll and Baldasano, 2000

O₃ Trends and exceedances


Source: Querol et al. (2016 AE).

Open questions


- What are the sources responsible for the high O₃ concentration over the whole Spanish Peninsular territory?
- Can administrations implement control strategies that are effective to reduce high O₃ concentration?

Source Apportionment (SA) methods in AQM

SA within the AQM

Advantages

- Time saving (one simulation)
- Mass consistency
- Real atmospheric conditions
- Fully traceable

Objective

Unraveling the origin of the high surface O_3 concentrations in the Spanish Iberian Peninsula (IP)

- Quantifying the contribution from:
 - the main NO_x emission sectors within the IP
 - the external contribution (O₃ produced outside of the IP)
- Using the Integrated Source Apportionment Method (ISAM) in the CALIOPE air quality modelling System at high resolution over the IP.

The CALIOPE System

Set-up for the Source Apportionment

Barcelona Supercomputing Center Centro Nacional de Supercomputación

ETEO

CHEM

- WRF-ARWv3.5 (RRTM/WSM3/YSU/NoahLSM)
- Ver. Res.: 37σ / 50hPa (top)
- Hor. Res: 12 km (EU12) 4 km (IP4)
- IC/BC (EU12/IP4): GFS (NCEP) / nesting EU12

• HERMESv2.0

- EU12: HERMES-DIS (EMEP data 2009)
- IP4: HERMES-BOUP (Spain) + HERMES-DIS(Europe)
- Biogenic emission MEGANv2.0.4

- CMAQv5.0.2 (ISAM, CB05TUCL, AERO6)
- Ver. Res: 37σ / 50hPa (top)
- Hor. Res: 12 km (EU) 4 km (IP)
- BC (EU12/IP4): MOZART4-GEOS-5/nesting EU12
- MCIPv4.0

O₃ Integrated Source Apportionment Method (ISAM)

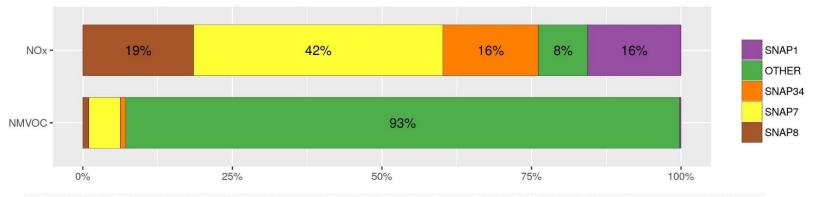
- Augmented version of **CMAQv5.0.2** (AERO6, CB05TUCL) (*Kwok et al., 2013; 2014*)
- O₃ formation regime (NOx- or VOC-limited conditions): ratio H₂O₂/HNO₃ (Zhang et al., 2009).

$$P_{tag}^{N,new} = P_{tag}^{N,old} + P_{bulk}^{new} \frac{\sum_{x} NO_{x,tag}}{\sum_{tag} \sum_{x} NO_{x,tag}}$$

 $P_{tag}^{V,new} = P_{tag}^{V,old} + P_{bulk}^{new} \frac{\sum_{y} VOC_{y,tag} \times MIR_{y}}{\sum_{tag} \sum_{y} VOC_{y,tag} \times MIR_{y}}$ VOC-limited conditions - Ratio_{H2O2/HNO3} < 0.35

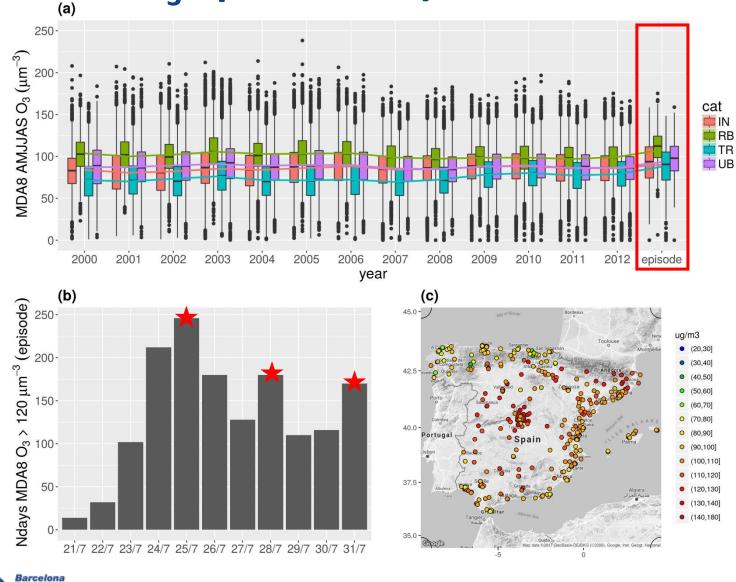
 NO_{x} -limited conditions - Ratio_{H2O2/HNO3} > 0.35

NOx, tag: concentrations of the nitrogen species in CB05 (9 species) VOCj,tag: concentrations of the VOC species in CB05 (14 species) MIRy: Maximum Incremental reactivity factor of the VOC species y, corresponding to the O₃ generating potential of each single VOC specie.

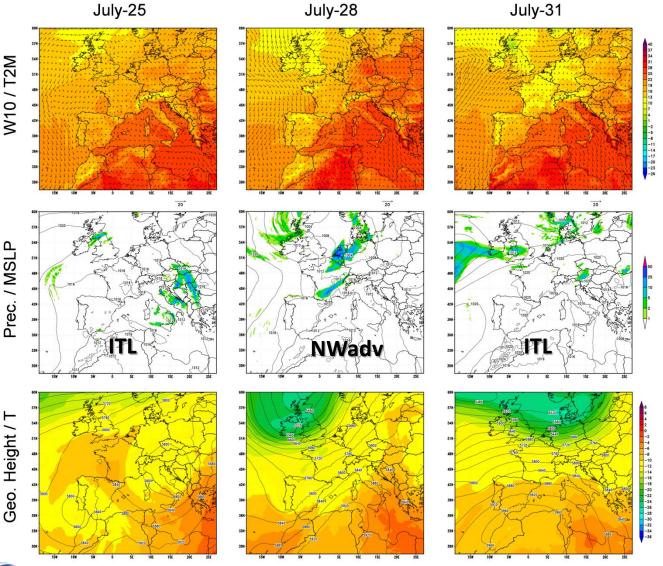

The bulk O_3 concentration in each model grid cell (P_{bulk}) is equal to the sum of O_3 tracers that were produced in either NO_x or VOC-sensitive conditions

$$P_{bulk} = \sum_{tag} P_{tag} = \sum_{tag} P^N_{tag} + \sum_{tag} P^V_{tag}$$
 Mass conservative

O₃ tagged sources in this study

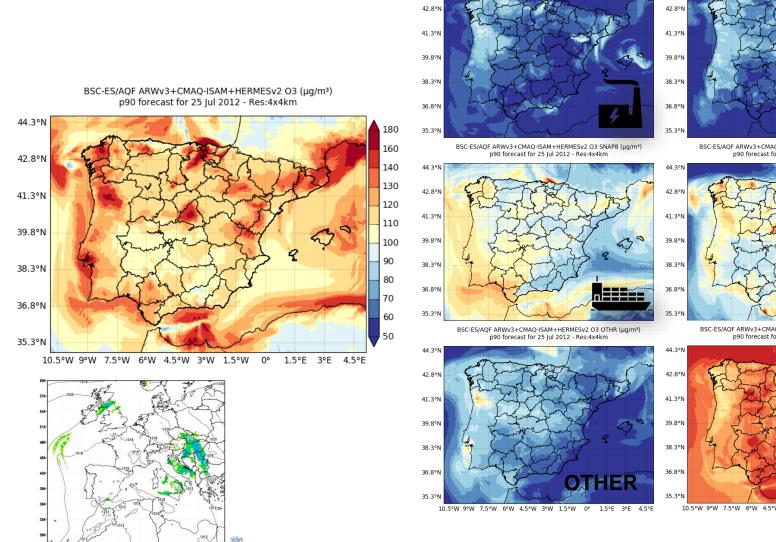

Annual emissions HERMESv2.0 in Spain 2009

ISAM tag*	Emission by SNAP category	Description
SNAP1	SNAP1	SNAP1: Energy industry
SNAP34	SNAP34	SNAP34: Industry (combustion and processes)
SNAP7	SNAP7	SNAP7: Road transport, exhaust and non-exhaust
SNAP8	SNAP8	SNAP8: Non-road transport (international shipping)
OTHR	SNAP2 + SNAP5 +	SNAP2: residential and commercial/institutional combustion
	SNAP6 + SNAP9 +	SNAP5: Fugitive emissions from fuels
	SNAP10 +	SNAP6: Product use including solvents
	SNAP11	SNAP9: waste management
		SNAP10: Agriculture
		SNAP11: Other sinks
BCON	-	Chemical boundary conditions to IP4 domain from the EU12 simulation which
		includes the contribution from Europe and international contribution from
		MOZART-4
ICON	-	Initial chemical condition of the domain IP4

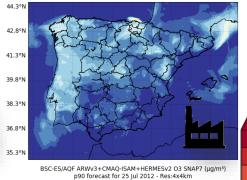


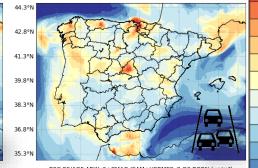
O₃ episode: July 21-31 2012

Meteorological context (6 UTC)


ITL and NWadv represent 44% of the days in the IP both taking place in summer (Valverde et al., 2015)

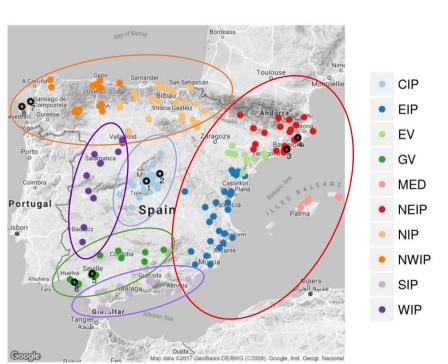
BSC Barcelona Supercomputing Center Centro Nacional de Supercomputación


Source-sector contribution during peaks: ITL – July 25

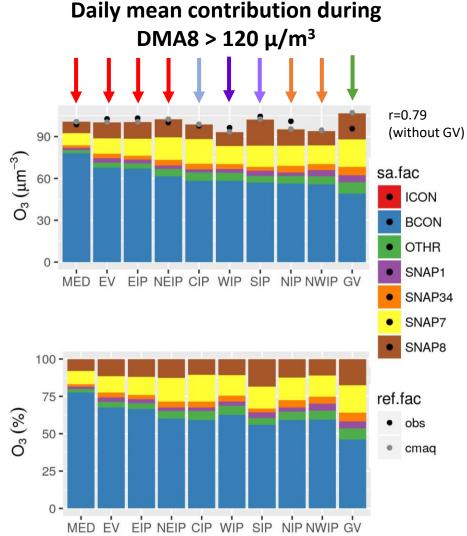

44.3°N

p90 forecast for 25 Jul 2012 - Res:4x4km

BSC-ES/AQF ARWv3+CMAQ-ISAM+HERMESv2 O3 SNAP34 (µg/m³) p90 forecast for 25 Jul 2012 - Res:4x4km



BSC-ES/AQF ARWv3+CMAQ-ISAM+HERMESv2 O3 BCON (µg/m³) p90 forecast for 25 |ul 2012 - Res:4x4km



10.5°W 9°W 7.5°W 6°W 4.5°W 3°W 1.5°W 0° 1.5°E 3°E 4.5°E

Regionalization of source-sector contribution

Evaluation

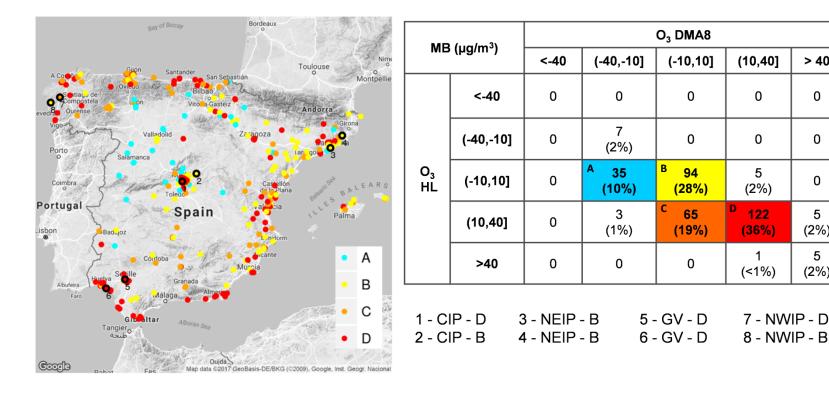
EIONET Spanish monitoring stations: 347 O_3 and 357 NO_2 (85% temporal coverage in the episode)

> 40

0

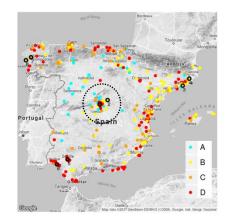
0

0

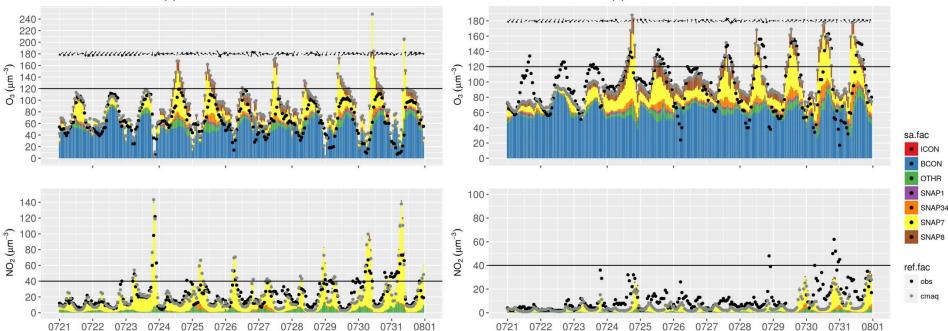

5

(2%)

5


(2%)

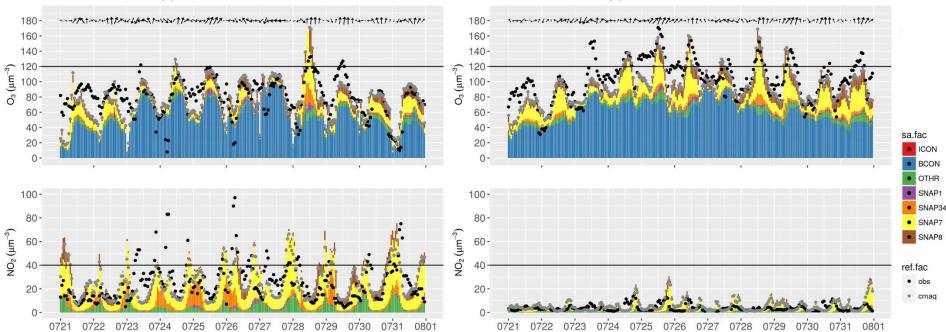
- O_3 at RB (±4 µg/m³) and r > 0.6 (50% stations).
- NO₂ highest underestimation at TR (-7 μ g/m³) and r >0.6 (25 % stations.)



Central Iberian Peninsula (CIP)

(b) 2 - CIP - B - ES1537A - BU

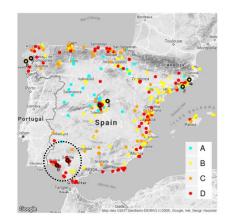
(a) 1 - CIP - D - ES0126A - BU

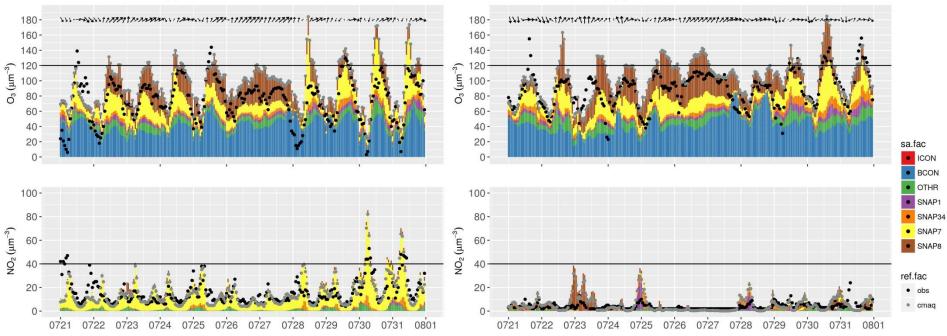


Northeastern Iberian Peninsula (NEIP)

(c) 3 - NEIP - B - ES1992A - BU

Portugal Care of the second of

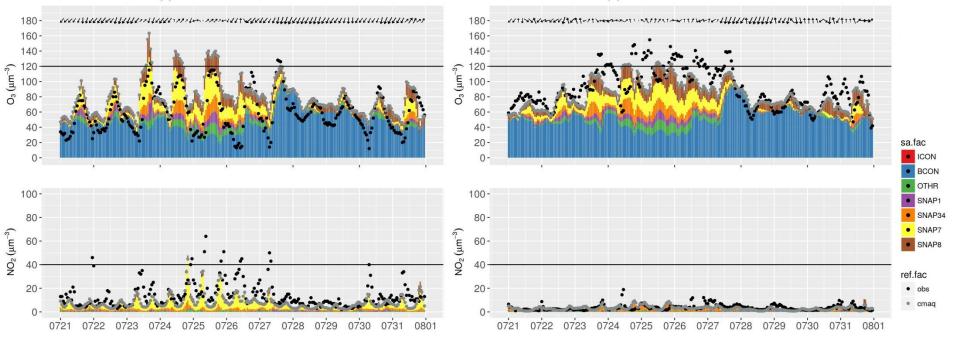

(d) 4 - NEIP - B - ES1778A - BR



Gualdaquivir Valley (GV)

(a) 5 - GV - D - ES1644A - BU

(b) 6 - GV - D - ES1793A - BR


Barcelona Supercomputing Center Centro Nacional de Supercomputación

North Western Iberian Peninsula (NWIP)

Portugal Caracter Control of Cont

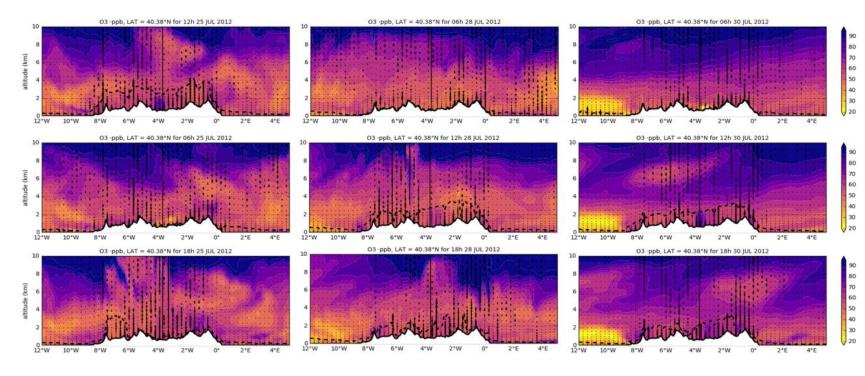
(d) 8 - NWIP - B - ES0005R - BR

(c) 7 - NWIP - C - ES1868A - BU

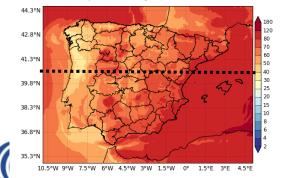
Conclusions

- The **external contribution** accounted > 45% of the O₃ under exceedances of the 120 μ g m⁻³ threshold for the DMA8 O₃ (all regions).
 - Downward mixing of O_3 upper layers transported from beyond the IP in CIP.
 - Recirculation in the Spanish Mediterranean coasts.
- Contribution from local/regional sources is significant in O₃ peaks downwind of NO_x hotspots.
 - Central and NE IP (big cities in Spain): the highest road transport contribution to O₃ (up to 40% in daily peak during events).
 - Industrial regions (N and NW IP and Guadalquivir Valley): energy generation and industrial processes contribute to O₃ up to 11%.
- The **non-road transport** is a contributor as significant as the road transport in all sub-regions (10-19%).
- **ISAM-CALIOPE** useful tool:
 - Source contribution assessment in the Spanish IP.
 - Identification of potential errors in emission estimates from different sectors: shipping, traffic emissions.
 - Necessities of improvement in meteorology under-stagnant conditions.
 - Design more cost-efficient mitigation plans (together with source sensitivity).

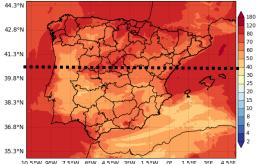
Barcelona Supercomputing Center Centro Nacional de Supercomputación

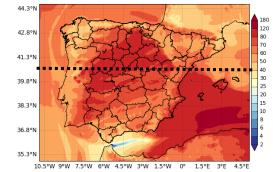


THANK YOU!

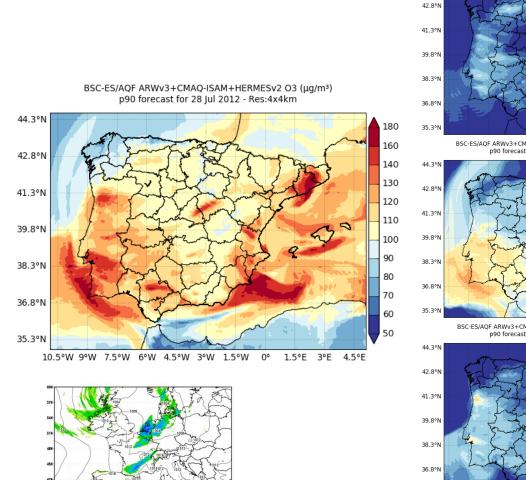

maria.pay@bsc.es

www.bsc.es


O3 cross sections


BSC-ES/AQF ARWv3+CMAQ-ISAM+HERMESv2 O3 BCON (µg/m3) p90 forecast for 25 Jul 2012 - Res:4x4km

BSC-ES/AQF ARWv3+CMAQ-ISAM+HERMESv2 O3 BCON (µg/m³) p90 forecast for 28 Jul 2012 - Res:4x4km


BSC-ES/AQF ARWv3+CMAQ-ISAM+HERMESv2 O3 BCON (µg/m3) p90 forecast for 31 Jul 2012 - Res:4x4km

10.5°W 9°W 7.5°W 6°W 4.5°W 3°W 1.5°W 0° 1.5°E 3°E 4.5°E

Source-sector contribution during peaks: Nwad – July 28

44.3°N

BSC-ES/AQF ARWv3+CMAQ-ISAM+HERMESv2 O3 SNAP1 (μg/m³) p90 forecast for 28 Jul 2012 - Res:4x4km

BSC-ES/AQF ARWv3+CMAQ-ISAM+HERMESv2 O3 SNAP34 (µg/m³) p90 forecast for 28 jul 2012 - Res:4x4km

180

120

80

70

60

50

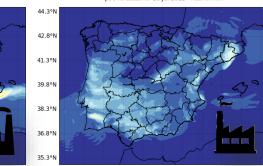
40

30

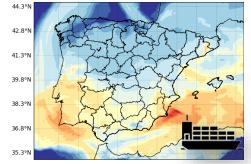
25

20

15


10

8


6

4

2

BSC-ES/AQF ARWv3+CMAQ-ISAM+HERMESv2 O3 SNAP8 (µg/m³) p90 forecast for 28 jul 2012 - Res:4x4km

BSC-ES/AQF ARWv3+CMAQ-ISAM+HERMESv2 O3 OTHR (µg/m³) p90 forecast for 28 Jul 2012 - Res:4x4km

10.5°W 9°W 7.5°W 6°W 4.5°W 3°W 1.5°W 0° 1.5°E 3°E 4.5°E

BSC-ES/AQF ARWV3+CMAQ-ISAM+HERMESv2 Q3 SNAP7 (µg/m³) p90 forecast for 28 jul 2012 - Res:4x4km 41.3°N 42.8°N 41.3°N 39.8°N 38.3°N 36.8°N

BSC-ES/AQF ARWv3+CMAQ-ISAM+HERMESv2 O3 BCON (µg/m³) p90 forecast for 28 |ul 2012 - Res:4x4km


35.3°N

10.5°W 9°W 7.5°W 6°W 4.5°W 3°W 1.5°W 0° 1.5°E 3°E 4.5°E


Source-sector contribution during peaks ITL – July

44.3°N

F ARWv3+CMAQ-ISAM+HERMESv2 O3 SNAP1 (µg/m³) BSC-ES/AQF ARWv p90 forecast for 31 Jul 2012 - Res:4x4km p90 fo

BSC-ES/AQF ARWv3+CMAQ-ISAM+HERMESv2 O3 SNAP34 (µg/m³) p90 forecast for 31 Jul 2012 - Res:4x4km

BSC-ES/AQF ARWv3+CMAQ-ISAM+HERMESv2 O3 SNAP7 (µg/m³) p90 forecast for 31 Jul 2012 - Res:4x4km 180

120

80

70

60

50

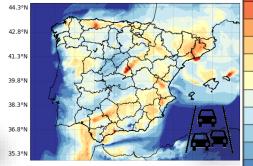
40

30

25

20

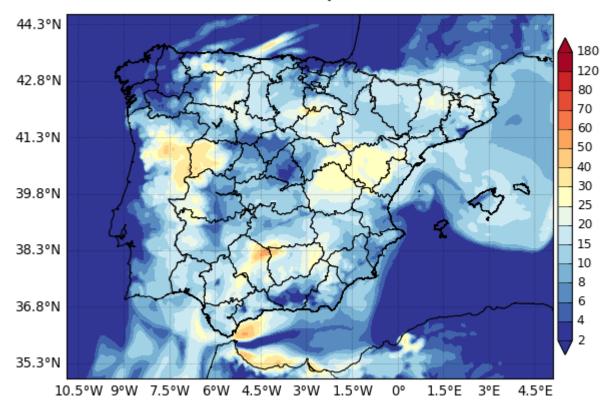
15


10

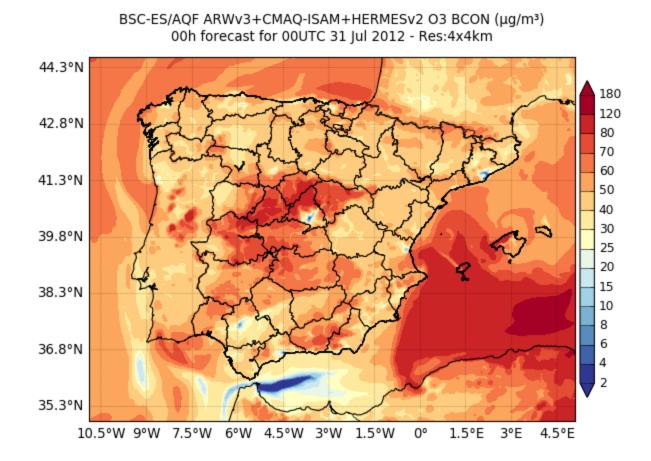
8

6

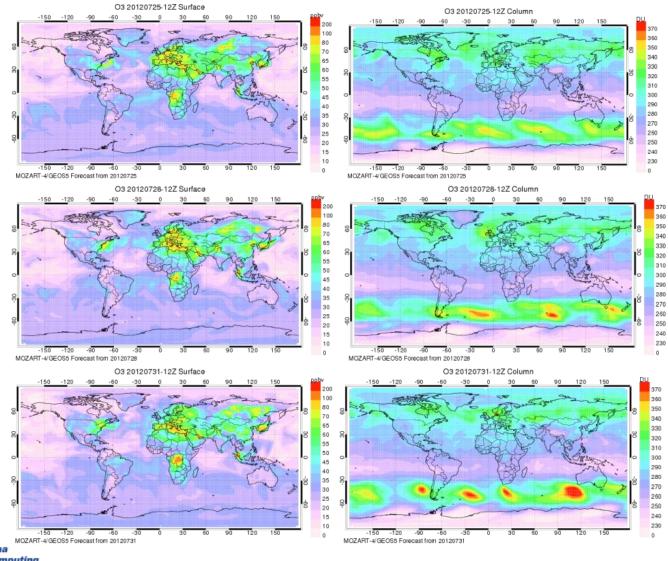
4


2

BSC-ES/AQF ARWv3+CMAQ-ISAM+HERMESv2 O3 BCON (µg/m³) p90 forecast for 31 Jul 2012 - Res:4x4km



10.5°W 9°W 7.5°W 6°W 4.5°W 3°W 1.5°W 0° 1.5°E 3°E 4.5°E



BSC-ES/AQF ARWv3+CMAQ-ISAM+HERMESv2 O3 SNAP7 (µg/m³) 00h forecast for 00UTC 31 Jul 2012 - Res:4x4km

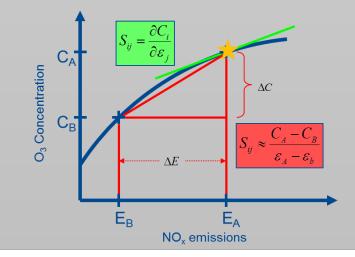
STATE vs RESPONSE

What are the various contributors to modeled concentrations?

Source contribution approaches: tracks the formation and transport of O_3 and $PM_{2.5}$ from specific sources and allows the calculation of contributions at each hour and grid cell

STATE: relative importance of sources that contribute to high concentrations)

- ✓ Brute force zero out
- ✓ Ozone and PM source apportionment


How will the modeled concentrations change based on changes to emissions?

Source sensitivity approaches: estimates sensitivity coefficients that relate emission changes from specific emission sources to model outcomes at each hour and grid cell

RESPONSE: prediction of how pollutant will respond to reductions in precursor emissions

- ✓ Brute force zero out
- ✓ Decoupled Direct Method (DDM)

DDM compared to Brute Force

