CLIMATE SERVICES for agriculture

Raül Marcos (1), Nube Gonzalez-Reviriego (1), Verónica Torralba (1), Sara Hernández (1), Andrea Manrique (1), Nicola Cortesi (1), Albert Soret (1), and Francisco J. Doblas-Reyes (1,2)

Scientific user-driven research

The VISCA project

VISCA is a **Climate Service (CS)** and **Decision Support System (DSS)** that integrates **climate**, **agricultural** and **end-users specifications** to design medium- and long-term **adaptation strategies to climate change on vineyards**.

The main **objective** of VISCA is to make European wine industries resilient to climate changes while minimizing costs and risks through an improvement of the production management.

The VISCA project

Several data sources will be integrated into a Geospatial database:

Inputs

- End-users' requirements
- Irrigation modelling data
- Phenological modelling data
- Weather (short, medium-term and seasonal) forecasting data

Outputs

Suggestions of best actions for crop management to adjust the life cycle of the vineyard.

VISCA Demo-sites

- Spain (Codorniu)
- Italy (Mastroberardino)
- Portugal (Symington)

The VISCA project

How we can help?

CLIMATE SERVICES ADDED VALUE

RESEARCH ADDED VALUE

SEASONAL PREDICTIONS

- NMME, EUROSIP
- Global domain
- Aggregated output in terciles
- Forecast of extremes

- Forecast quality assessment: comparison to observations
- Bias adjustment: model correction
- Seasonal predictability: teleconnections
- Data management

- User-defined information: timescales, domain, var...
- User interface Platform:
- E.g. Resilience prototype
- Knowledge transfer:
 Technical reports and
 factsheets
- Performance assessment:
 demonstrating value for
 decision making

How we can help?

The available seasonal predictions can provide additional value for vineyard management e.g.:

- Phenology
- Irrigation
- Resource allocation

How we can help?

Seasonal forecasts (dynamical)

- Include comprehensive range of sources of predictability
- Predict joint evolution of ocean and atmosphere flow
- Includes a large range of physical processes
- Includes uncertainty sources, important for prob. Forecasts
- Systematic model error is an issue!
- Low resolution limits its applicability to local scales

Need for bias adjustment and downscaling methods

Bias correction

Bias correction

Method	Equation	Description
Simple bias correction	$y_{j,i} = (x_{ij} - \bar{x}) \frac{\sigma_{ref}}{\sigma e} - \bar{o}$	Based on the assumption that both the reference and forecasted distribution are well approximated by a Gaussian distribution.
Calibration method	$y_{j,i} = \alpha x_i + \beta z_{ij}$	Variance inflation modifies the predictions to have the same interannual variance as the reference dataset and corrects the ensemble spread to improve the reliability.
Quantile mapping	$y_{j,i} = (ecdf^{ref})^{-1} ecdf^{mod}(x_{ij})$	It determines for each forecast to which quantile of the forecast climatology it corresponds, and then they are mapped to the corresponding quantile of the observational climatology.

Bias correction

AMJ / system5_m1 / jra55 / tas / 1981-2015 / Lead-1 / Europe / Reliabilty

Downscaling

Perfect prognosis approach:

- In the training phase the statistical model is calibrated using observational data for both the predictands and predictors (e.g. reanalysis data)
- Typical techniques: transfer functions, analogs, weather typing, weather generators, etc. (Maraun et al. 2010)

Downscaling

MOS (Model Output Statistics) approach:

 The predictors are taken from the same model for both the training and downscaling phases (e.g. Eden and Widmann 2014)

Thank you!

raul.marcos@bsc.es

The research leading to these results has received funding from the EU H2020 Programme under grant agreement SC5-2016-2017-730253-2 (VISCA), GA 641811 (IMPREX) and GA 690462 (MEDSCOPE); the Ministerio de Economía y Competitividad (MINECO) as part of the HIATUS project CGL2015-70353-R.