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• Projections

• Impact analysis

• Adaptation to climate change.

Currently, only computational models have the 
potential to provide geographically and physically 
consistent estimates.
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Nucleus for European Modeling of the Ocean 
(NEMO) is a state-of-the-art global ocean 
model

It is used in oceanographic research, 
operational oceanography, seasonal forecast 
and climate studies

Includes several sub-models. Many of them 
can work in standalone version , many others 
need to be coupled
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A climate modeling Timeline

From the 4th National Climate Assessment (US), Volume I

Inclusion of new components

• Allowed the representation of new climate and biogeochemical
processes

• Improved the ESMs ability to represent the real world

• Provides a new framework to investigate the interactions
between the different components
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A climate modeling Timeline
Increase in spatial resolution: Atmosphere

Today

Typical climate 
model in 90s

Default resolution

“High” resolution

Achieving higher resolutions is essential to better represent orography, and its
effect on climate (i.e. in precipitation) 
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A climate modeling Timeline
Increase in spatial resolution: Ocean

Today

Standard 
Resolution (1°)

The improvements in ocean resolution translate in a better representation of 
eddies and ocean currents, which are key to describe realistically decadal

variability in the ocean

High Resolution (0.25°) 
Eddy-permitting

“Ultra-High” resolution:
Eddy-resolving
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Challenges

• To be able to use the computing power of modern 
supercomputers, applications must exploit extreme 
parallelism. To do so, applications must use:
• Synchonization-reducing algorithms.
• Communication reducing algorithms.
• Mixed Precision methods.
• Autotuning.
• Fault resilient algorithms.
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• Start from scratch to use better the resources?

Most of models are community models and communities are reluctant to deep 
changes

• Adapt the existing state-of-the-art models seems wiser choice!
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• Perform a computational performance analysis of the NEMO model
• Suggest and apply optimizations to increase model’s performance on 

modern supercomputers
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Impact of Communication
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Optimizations

• Reduction of communication:
• Message agregation

• Removing unnecessary collective communication
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Impact of our work

• Our optimizations have been included in the latests stable 
release. Hundreds of users arround the world will take profit 
of our it and millions of computer hours can be saved.
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• Paper under revision with the 
methodology used to analyze the 
model, that can be useful for other 
Earth Science models.
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ELPiN

• Removing the land-only processes in the smart way.

10
5



ELPiN

• Removing the land-only processes in the smart way.

10
6



ELPiN

• Impact on ORCA025 simulations
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Impact of our work

• This tool has been implemented in the EC-Earth production 
workflow. CMIP-6 simulations with EC-Earth will be using it 
and therefore saving millions of computing hours. 
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• Presented at ICCS 2017 @ Zurich



Exploring the use of mixed Precision
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• Which precision is needed for the data that we want to 
represent?

1.2345 = 12345 x 10-4

Significand

Exponent

Base
~10-3
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~10-16

Satellites can measure sea surface temperature with an uncertainty of 0.3 ºC and 
surface wind with an uncertainty of 1 m/s.
- Remote Sensing of European Seas - V.Barale, M.Gad ~10-1

To represent data with this level of uncertainty, using half-precision (16-bit) should 
be enough. Instead, double precision (64-bit) is the standard.
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Reduced Precision Emulator

• Fortran Library developed by the Atmospheric, Oceanic & Planetary Physics 
group, within the University of Oxford Department of Physics
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Method
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Fix parameter 
declarations

Solve calls to external 
routines

Fix function calls with 
hardcoded reals

Fix read and write 
statements

Some more minor 
issues
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Minimize the number 
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Generate the namelists
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tests (eventually 
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Handle dependencies

Collect results
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Implementing the emulator

• After some months lost manually implementing the emulator…
a Python tool to automatize the process was created.
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Preparing tests to analyze the impact of the 
numerical precision 

• Models have thousands of variables, and individual screening of each variables 
may be expensive and unnecessary.

• Minimizing the number of tests to do:

𝑷(𝑛) = 

𝑥=0

𝑛−1

(1 − 𝑝)𝑥 · 𝑝

𝑵º𝑻𝒆𝒔𝒕𝒔 =
𝑁

𝑛
+
𝑁

𝑛
· 𝑃 𝑛 · 𝑛 = 𝑁 ·

1

𝑛
+ 𝑃 𝑛

Where:
• p: Probability of a variable to need more than Z bits of precision
• P: Probability of having a variable needing more than Z bits of precision in a test with n members
• n: Size of the groups
• N: Total number of variables
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Executing the tests

Reference 
Simulation

Group 1 
Simulation

Group 1 
Flag

Var 01 
Simulation

Var 002 
Simulation

Group 2 
Simulation

Group 2 
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Var 21 
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Var 22 
Simulation

Group … 
Simulation

Collect 
Results

Process 
Results
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Full Workflow has 4565 jobs…
luckily, most of them doesn’t need 

to be executed!
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Exploring the use of mixed Precision
• Potential Impact? 
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Collaborations

• Three months international secondment at University of California Santa Cruz.
• NEMO HPC and development teams.
• EC-Earth community.
• University of Oxford’s Department of Physics , group of Predictability of 

Weather and Climate
• RIKEN/AICS
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Conclusions

• The main research objectives of the thesis have been fulfilled, even surpassing 
the initial scope and being useful for other Earth System models.

• The main objective of the last year of the thesis will be the publication of at 
least two articles. Additionally, an actual mixed-precision implementation of 
the NEMO model will be done.
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