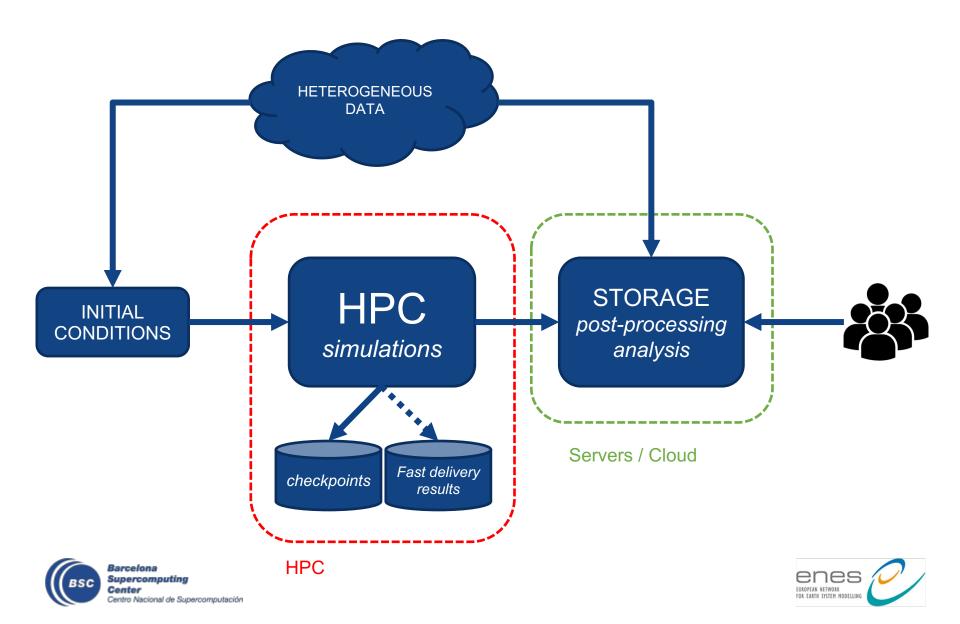


Barcelona Supercomputing Center Centro Nacional de Supercomputación



Earth System Modelling: requirements and challenges

**Kim Serradell** 


**Computational Earth Sciences** 

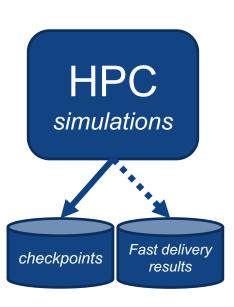
BDEC2 Kobe 2019



19<sup>th</sup>-21<sup>st</sup> February

#### **Earth System Modelling Workflow**




### **Pre-processing**

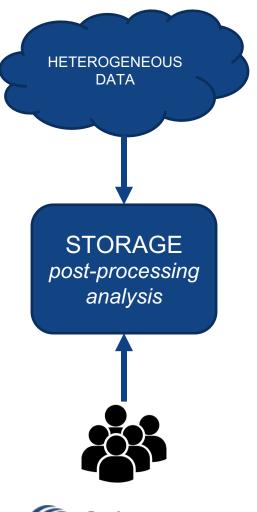


- Deal with massive and heterogenous amount of data (Earth Observations)
  - Sensors (with valid and non valid data)
  - Satellite data
- Complex processes to build initial conditions
  - Real-time data
  - Data assimilation
  - Model checkpoints as initial conditions








## Model simulation

- Traditional HPC
  - High-powered nodes, large batch jobs, low-latency networks to deal with increasing problem size (resolution, ensembles, ...)
  - Programming models to deal with heterogenous architectures (DSLs and "separation of concerns")
  - Reproducibility
    - Software Stack (using tools like Spack or Containers)
    - Results (CMIP6 exercise  $\rightarrow$  ~ 100 models)
  - Operational services
  - Storage
    - Periodic output of selected variables
    - Fast delivery (for meteorological applications)
    - Traditional (mix disk/tapes) for later analysis





#### **Post-processing**



Barcelona Supercomputing Center Centro Nacional de Supercomputad

- Multiple data sources to validate results
- In-situ analysis visualization
  - Reformatting, sub-setting, re-gridding, averaging...
  - Limit as possible data transfers
  - On user demand analysis and needs
- Reliable dissemination platforms
  - Earth System Grid Federation (CMIP6: 15 to 30 Pb of data)
  - Curated archive, identification and citation
- Efficient and timely handling
- Required throughput for real world applications
- Climate services
- Machine Learning growing need



#### And last but not least...

- We need powerful, reproducible and easy to adopt workflows to orchestrate the full earth modelling
- Don't forget "Human factor"
  - One individual, multiples roles
  - Training Research Engineers, Computer Scientists...
  - Identify end-users: Earth Scientists, Data Scientists, Policy Markers...
- Extreme Earth Flagship
  - Technology case (Science Cloud, Big Data handling and Distributed extreme-scale computing)
  - <u>http://www.extremeearth.eu/technology-case</u>









Barcelona Supercomputing Center Centro Nacional de Supercomputación



# Thank you

#### kim.serradell@bsc.es