

17/05/2019

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Satellite data assimilation of dust aerosol observations for the MONARCH forecasting system

Enza Di Tomaso, Jerónimo Escribano, Nick Schutgens, Oriol Jorba, Carlos Pérez García-Pando, Francesca Macchia

Living Planet Symposium 2019, Milano, Italy

Constrainting Mineral Dust Simulations with Observations

Model simulations and observations are combined to obtain the 'best' estimate of current atmospheric conditions (dust analysis)

Motivation

Assess the potential benefit of <u>dedicated dust observation</u> products in dust data assimilation

Motivation

Assess the potential benefit of <u>dedicated dust observation</u> products in dust data assimilation

Operational **dust forecast** and **dust reanalyses** are produced in the framework of aerosol data assimilation, where **total AOD** is used to constrain all the main aerosol species

Dust component of the NMMB-MONARCH chemical weather system (Pérez et al., 2011)

Dust component of the NMMB-MONARCH chemical weather system (Pérez et al., 2011)

NMMB-MONARCH ensemble members are obtained taking into account model and IC/BC uncertainty

Dust component of the NMMB-MONARCH chemical weather system (Pérez et al., 2011)

NMMB-MONARCH ensemble members are obtained taking into account model and IC/BC uncertainty

Role of the ensemble (B matrix):

- spatial spreading of information from observations
- statistically consistent increments between neighbouring grid points
- multivariate analysis

An ensemble-based DA scheme: LETKF - usage of a flow-dependent background error covariance

- performing the analysis locally

- An ensemble-based DA scheme: LETKF - usage of a flow-dependent background error covariance
- performing the analysis locally

Dedicated dust observations:

- MODIS Dark Target AOD in dust-dominated conditions
- MODIS Deep Blue AOD in dust-dominated conditions
- IASI dust AOD
- ACTRIS lidar dust exinction coefficient profiles

MODIS Dark Target and Deep Blue, Level3

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Assimilated observations

NRL MODIS Dark Target, L3 C5

- filtered and corrected,
- spatially aggregated,
- uncertainty estimation
- (Zhang and Reid, 2006; Hyer et
- al., 2010; Shi et al., 2011)
- AE, AI filter for dust

Assimilated observations

NRL MODIS Dark Target, L3 C5

filtered and corrected,
spatially aggregated,
uncertainty estimation
(Zhang and Reid, 2006; Hyer et al., 2010; Shi et al., 2011)
AE, AI filter for dust

MODIS Deep Blue, L3 C6

- aggregation of highest quality L2uncertainty model for L2
- (Sayer et al., 2014)
- AE, AI, counts filter
- uncertainty model for L3: $\sigma_m^2 + \sigma_r^2$

Ensemble Spread Reduction

Ensemble free run

Data assimilation run

 Dust AOD (550 nm) CV, ENS-free-run
 Dust AOD (550 nm) CV, DA-NRL-DB

 Image: Constraint of the state of the st

Data assimilation lowers the values of the coefficient of variation in the regions where observations are present, which indicates a reduction of the ensemble spread due to the assimilated observations

Validation of the forecast

MODIS Deep Blue, Level 2

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Assimilated observations

MODIS Deep Blue, L2 C6
- AE, ω filter
- highest quality flag
(Ginoux et al., 2012)
- uncertainty model based
on Sayer et al., 2014

Analysis increments

Feedback from assimilation increments

DustClim Project (2017-2020)

Dust Clim *European Research Area* for Climate Services

Produce a **high resolution dust reanalysis** for Northern Africa, Middle East and Europe covering the satellite era of quantitative aerosol information, and develop **dust-related services** tailored to specific socio-economic sectors

Barcelona Supercomputing Center Centro Nacional de Supercomputación

IASI dust AOD, Level 3

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Aerosol_cci and CMUG projects

climate change initiative

IASI dust AOD

aerosol

European Space Agency

- observations available day time and night time
- over ocean and over land (desert)
- 10 μm: detection of dust aerosol coarse mode (infrared wavelengths and "V" shaped depression of the Brightness Temperature)
 - pixel level uncertainty

2006	2012	2018	2021	2028	2035	
IASI/	IASI/	IASI/	IASI-NG/	IASI-NG/	IASI-NG/	
Metop-A	Metop-B	Metop-	Metop-SG	MetopSG-B	MetopSG-C	/

IASI analyses

- The seasonal value of AOD is lowered by DA over the strong African sources in all the experiments, with the exception of the MAPIR analysis;
- The LMD analysis stands out for higher AOD values at latitudes above 40 degree north.

Aerosol, Clouds, and Trace gases (ACTRIS) lidar profiles

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Evaluating the potential of ACTRIS-2 profiles for DA

- Model simulations from the BSC model (NMMB-MONARCH)
- PollyNet lidar extinction profiles processed by TROPOS

ACTRIS

MODIS-Aqua 21/04/2017, NASA

Evaluating the potential of ACTRIS-2 profiles for DA

Event observed by 3 lidar sensors located in Finokalia (Crete), Limassol (Cyprus) and Haifa (Israel) part of the PollyNet (http://polly.tropos.de/) system. Data (with uncertainty estimation) processed by TROPOS.

A©TRi

Evaluating the potential of ACTRIS-2 profiles for DA

- Model simulations from the BSC model (NMMB-MONARCH)
- PollyNet lidar extinction profiles processed by TROPOS

Case study: 19-23 April 2017

correction of a model underestimation of the total column extinction correction in most cases the plume height

Constrainting Mineral Dust Simulations with Observations

Model simulations and observations are combined to obtain the 'best' estimate of current atmospheric conditions (dust analysis)

Constrainting Mineral Dust Simulations with Observations

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Thanks to the people taking measurements, maintaining sites, making retrievals and observation products

enza.ditomaso@bsc.es