# Impact of initialisation on the reliability of decadal predictions

#### D. Verfaillie<sup>1</sup>, F. J. Doblas-Reyes<sup>1,2</sup>, B. Solaraju Murali<sup>1</sup>, M. Donat<sup>1</sup> and S. Wild<sup>1</sup>

<sup>1</sup> Earth Sciences Dept, Barcelona Supercomputing Center (BSC), Barcelona, Spain <sup>2</sup> Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain

> **14<sup>th</sup> International Meeting on Statistical Climatology** *Toulouse, 27 June 2019*









## Introduction: Initialised decadal predictions (INIT) vs. non-initialised projections (NoINIT)

ERED





## **Methods: Comparison between INIT and NoINIT**

Generally done in terms of forecast quality (skill scores)

Here: impact of initialisation in terms of **reliability** = agreement between the predicted probabilities and observed relative frequencies of a given event

Different tools:

- rank histograms

Precip, European region 1960-2005, Forecast year 1 EC-Earth 2.3, 5 members Observations: GPCC v7



INIT



Verfaillie et al., in prep.



## **Methods: Comparison between INIT and NoINIT**

Generally done in terms of forecast quality (skill scores)

Here: impact of initialisation in terms of **reliability** = agreement between the predicted probabilities and observed relative frequencies of a given event

Different tools:

- rank histograms
- reliability diagrams

T, European region 1960-2005, For. years 1-5 EC-Earth 2.3, 5 members Observations: GISSTEMP





## **Methods: Comparison between INIT and NoINIT**

Generally done in terms of forecast quality (skill scores)

Here: impact of initialisation in terms of **reliability** = agreement between the predicted probabilities and observed relative frequencies of a given event

Different tools:

- rank histograms
- reliability diagrams
- REL from Brier score

Sea-level pressure 1960-2005, Forecast year 1 EC-Earth 2.3, 5 members Observations: JRA 55



Verfaillie et al., in prep.

#### **Methods: Multi-model ensembles**

| Project                              | Centre     | Model (version)     | INIT ensemble size | NoINIT ensemble size |
|--------------------------------------|------------|---------------------|--------------------|----------------------|
| CMIP5                                | BCC        | BCC-CSM1.1          | 4                  | 1                    |
| CMIP5                                | СССМА      | CanCM4              | 10                 | 10                   |
| CMIP5                                | BSC        | EC-Earth            | 5                  | 11                   |
| CMIP5                                | NOAA-GFDL  | GFDL-CM2.1          | 10                 | 10                   |
| CMIP5                                | Met Office | HadCM3 (full field) | 10                 | 10                   |
| CMIP5                                | Met Office | HadCM3 (anomaly)    | 10                 | 10                   |
| CMIP5                                | MIROC      | MIROC5              | 6                  | 3                    |
| SPECS                                | IPSL       | IPSL-CM5A-LR        | 3                  | 4                    |
| SPECS                                | MPI        | MPI-ESM-LR (v1)     | 5                  | 3                    |
| SPECS                                | MPI        | MPI-ESM-LR (v2)     | 3                  | 3                    |
| SPECS                                | MPI        | MPI-ESM-MR          | 5                  | 3                    |
| DPLE/LENS                            | NCAR       | CESM1-CAM5          | 40                 | 40                   |
| Multi-model (ALL)                    |            |                     | 111 ( <b>101</b> ) | 108 ( <b>101</b> )   |
| Multi-model (ALL but NCAR DPLE/LENS) |            |                     | 71 (61)            | 68 ( <b>61</b> )     |

#### <del>ମ</del> —

#### **Results: surface T - Europe - f. year 1 - ANNUAL**



 $\rightarrow$  INIT more reliable than NoINIT

 $\rightarrow$  NoINIT overdispersive

ERCE

#### **Results: surface T - Europe - f. year 1 - ANNUAL**



 $\rightarrow$  INIT more reliable than NoINIT

- $\rightarrow$  NoINIT overdispersive
- $\rightarrow$  Different message from reliability diagrams:



#### **Results: surface T - Europe - f. year 1 - ANNUAL**

ERCD



Verfaillie et al., in prep.

#### **Results: surface T - Europe - f. year 1 - ANNUAL**

EAUCH



 $\rightarrow$  Not much impact from NCAR ensembles

#### ERCH

#### **Results: surface T - Europe - f. year 1 - SEASONAL**



 $\rightarrow$  Similar for most seasons, except MAM

## **Results: what about other regions?**

#### Surface T - f. years 1-5 - SON season

 $\rightarrow$  Yellow - Red = INIT more reliable than NoINIT





#### Conclusions

- From rank histograms: **INIT more reliable than NoINIT** for surface T over Europe (and f. year 1), NoINIT **overdispersive**
- Message from reliability diagrams is **different**
- Not much impact from the 40-member NCAR ensembles
- Reliability varies across **seasons**
- Added-value of INIT vs. NoINIT varies depending on **region**



#### Perspectives

- Work in progress: analysis of other variables (precipitation, sea-level pressure) and indices (AMV, GMT), for other regions, and evolution across forecast times
- Future work: **CMIP6** models, INIT-NoINIT **merging** methods

## Thanks

#### deborah.verfaillie@bsc.es







