Preliminary Results of recent Decadal Predictions with EC-Earth

STA RS

Simon Wild

Roberto Bilbao, Yohan Ruprich-Robert J Acosta, A Amaral, LP Caron, R Cruz-García F Doblas-Reyes, M Donat, P Ortega, V Sicardi, E Tourigny

Barcelona Supercomputing Center

Recent really means recent

- 1. Decadal Climate Prediction Project DCPP
- 2. Model Setup + Initialisation
- 3. First Quality Assessement of Decadal Hindcast Set
- 4. Climate Sensitivity in Historical Experiments

5. What am I actually doing here?

Near Term Climate Prediction

Near Term Climate Prediction - DCPP

EXCELENCIA

SEVERO

ns under review

The Decadal Climate Prediction Project (DCPP)

The term "decadal prediction" encompasses predictions on annual, multi-annual to decadal timescales. The possibility of making skilful forecasts on these timescales and the ability to do so is investigated by means of predictability studies and retrospective predictions (hindcasts) made using the current generation of climate models and by empirical methods. Skilful decadal prediction of relevant climate parameters is a Key Deliverable of the WCRP's Grand Challenge of Near-term Climate Prediction

The DCPP envisions three components:

- Hindcasts: the design and organization of a coordinated decadal prediction (hindcast) component of CMIP6 in conjunction with the seasonal prediction and climate modelling communities
- Forecasts: the ongoing production of experimental guasi-operational decadal climate predictions in в support of multi-model annual to decadal forecasting and the application of the forecasts
- Predictability, mechanisms and case studies: the organization and coordination of decadal climate predictability studies and of case studies of particular climate shifts and variations including the study of the mechanisms that determine these behaviours

DCPP A Protocol

 yearly initialised Experiments 1960-2017

pre diction

- 10 members
- 10 years

Near Term Climate Prediction - DCPP

Group/Model	Institution	Country	Component A B C		
EC-Earth	BSC/SMHI	Spain/Sweden	Y/M	Y/M	M/M
GFDL	NOAA	USA	Υ	Y	М
FIO-ESM	FIO	China	Υ	Y	М
NUIST-CSM	IPRC	USA/China	Υ	Y	Ν
BCC	BCC	China	Υ	Ν	Ν
CAS-ESM	CAS	China	М	М	М
MIROC	JAMEST/JMA	Japan	Υ	У	Y
Can-ESM5	CCCma	Canada	Υ	Υ	М
CNRM-CERFACS	CNRS	France	М	М	Y
MetOffice	MetOffice	UK	Υ	Y	Υ
Ureading/Stat	UReading	UK	Υ	Υ	Y
IPSL	LOCEAN	France	Υ	Ν	Υ
NERCS/NorCPS	GRI	Norway	Y	Y	Y
CMCC	CMCC	Italy	М	М	Υ
MPG	MPI	Germany	Υ	Υ	Υ
NCAR/CESM	NCAR	USA	Υ	Y	Υ
BESM	INPE	Brazil	Y	М	М
FGOALS	IAP	China	Υ	М	Υ
INM	RAS	Russia	Y	N	Y

20 Groups

- 13 Countries
- Component A (hindcasts)

BSC

- 16 Yes, 4 Maybe
- Component B (forecasts)
 - 11 Yes, 6 Maybe, 3 No
- Component C (mechanisms)
 - 11 Yes, 7 Maybe, 2 No

EXCELENCIA

SEVERO OCHOA

•

Barcelona

Center

Supercomputing

Centro Nacional de Supercomputación

Model Setup

Initial Conditions

Produced at BSC

OCE+ SI:

Historical reconstruction with NEMO-LIM stand alone, forced with ERA-40/Interim fluxes, and nudged globally towards 3D T and S from ORAS4

> Default surface restoring coefficients $\gamma_{T} = -40W/m^{2}/K$ $\gamma_{S} = -150 \text{ kg/m2/s/psu}$

Default 3D restoring timescales

EXCELENCIA

Barcelona

Center

BSC

Supercomputing

ntro Nacional de Supercomputación

Predictability of atmospheric variables

NAO-Index as defined in Jianping & Wang (2003):

35N-65N difference of standardised zonally averaged winter MSLP anomalies in the longitudinal band **80W-40E**

Unlike in other prediction systems, no significant skill in the NAO is obtained Larger ensemble sizes might be needed to detect the predictable NAO component

Preliminary results from DCPP Component A

Predictability of atmospheric variables

QBO-Index defined as the zonally averaged zonal wind at the **Equator and 50hPa**

Anomalies are computed with respect to the seasonal mean (as a function of lead time)

The QBO seems to be highly predictable in the first and second forecast years This skill is unrelated to the effect of the seasonal cycle

Preliminary results from DCPP Component A

Predictability of atmospheric variables

QBO-Index defined as the zonally averaged zonal wind at the **Equator and 50hPa**

Anomalies are computed with respect to the seasonal mean (as a function of lead time)

The QBO seems to be partly predictable from the second to fifth forecast years Skill is unrelated to the seasonal cycle, and is a consequence of its strong periodicity

Forecast Year 1 (M3-14) Combination of 2m temperature over land and SST over ocean

Year

Global Mean Surface Temperature

Barcelona Supercomputing Center Center Centor Nacional de Supercomputación

Effect of combining 2m Temp and SST

ENSO-Index: Niño3.4

Regional average of SST anomalies in the box [5N-5S, 170W-120W]

The hindcast maintains high ENSO skill during the first 5 forecast months (DEC through APR), and experiences some skill reemergence in the second winter

AMV-Index as defined in Trenberth & Shea (2006):

Decadally smoothed difference between the SST average in the **North Atlantic [0-60N, 80W-0]** and the **global mean SST**

The models has really high AMV skill, at least for the first 5 forecast years It might be due to the reduced degrees of freedom as a result of the smoothing

16

AMV-Index as defined in Trenberth & Shea (2006):

Raw difference between the SST average in the North Atlantic [0-60N, 80W-0] and the global mean SST

The skill drops but remains high also for the unfiltered timeseries

Global Mean SST

Global mean temperature is also largely predictable, although a non-negligible contribution comes from the long-term trend.

Global Mean SST

After a linear detrending (which is a rather artificial approach) the skill of global mean temperature goes down substantially, especially after the 2nd forecast year

Drift in Decadal Predictions

Global Mean SST

•Stronger seasonal cycle in model

•Predictions drift away from historicals

• Different attractor in historical and decadal experiments

Drift in Decadal Predictions

Clim Hist - Clim DCPP (Year1), 1970-2005

Clim Hist - Clim DCPP (Year10), 1970-2005

Strong warm bias in Southern Ocean, cold bias in North Atlantic

Drift in Decadal Predictions

Clim Hist - Clim DCPP (Year1), 1970-2005

Clim DCPP Yr10 - Clim DCPP Yr1, 1970-2005

Weak AMOC in predictions?

Results from Historical Ensemble

Labrador Sea mld FMA (m)

BSC

Barcelona

Center

Supercomputing

Centro Nacional de Supercomputación

Blue members show

- no convection in Labrador Sea until 1930
- weaker Sub Polar Gyre intensity
- weaker AMOC than red members

EXCELENCIA

SEVERO

Results from Historical Ensemble

Implications for estimation of added value of initialisation?

EXCELENCIA

SEVERO OCHOA

Barcelona

Center

BSC

Supercomputing

• Decadal Predictions with EC – Earth for CMIP6 DCPP Component A have completed and will be on ESGF soon (DECK experiments already are)

First (quick) results show no surprises in quality of hindcast set
→ probabilistic verification still missing

Summary

- Ongoing investigations:
- I. What is the best way to 'mimick' near surface temperature observations?
- II. Why do not initialised and initialised experiments have different model attractor?III. What can we learn from behaviour of historical simulations and what implications
- might that have for estimation of added value of initialisation?

AMV impacts over Europe

- Model differences and similarities of AMV impacts on European climate
- How do pace maker experiments compare to free-running ones?

Coupled model daily North Atlantic SST

Restoring (like a spring) of SST through non-solar surface fluxes :

$$\boldsymbol{Q}_{k} = \boldsymbol{Q}_{k}^{o} + \boldsymbol{\gamma}(\boldsymbol{SST}_{k}^{o} - \boldsymbol{SST}_{AMV})$$

- Restoring coefficient of $y = -40W/m^2/K$ over North Atlantic (Eq-70°N)
- Free ocean-ice-land-atmosphere interactions outside of North Atlantic

XCELENCIA

Barcelona

Supercomputing

Pre DCPP C Experiments

EXCELENCIA SEVERO OCHOA Barcelona Supercomputing BSC Center Centro Nacional de Supercomputación

ECMWF IFS HR AMV+ minus AMV-DJFM

MPI ESM 1-2 HR AMV+ minus AMV-DJFM

acher .

-

acha.

Section of

simon.wild@bsc.es

-

TATATA

TRABAL