EC-Earth3-ESM Earth System Model

Global Climate Model

Model Components

```
IFS (Atmospheric Model):
    T255 (0.75') ~80km
    L91 (top 0.01hPa) ~mesosphere
    IFS-HTESSEL (Land Model)
NEMO (Ocean Model):
    Nominal 1' Resolution
    L75 levels (thousands km deep)
LIM (Sea-ice Model):
    Multiple (5) ice category
```


Global Carbon Cycle Model

PISCESv2 (Ocean Biogeochemical Model):
Lower trophic levels of marine ecosystems
LPJ-GUESS (Dyn. Glob. Vegetation Model):
Process-based, plant functional types
TM5-CO2 (Atm. Chem. Transport Model):
34 layers, single-tracer version (CO2)

TRIATLAS

NeTNPPAO

PredOASI

Validation using satellite obs

Spring EC-Earth Surface Chlorophyll mg/m ${ }^{3}$

Retrospective decadal predictions using different initializations

CCiCC

Towards a near-term prediction of the climate and carbon cycle interactions in response to Paris Agreement emission trajectories

Variability in atm CO 2 growth rate is mostly due to natural variability
annual mean growth rate of CO_{2} at Mauna Loa

Testing different ocean biogeochemical reconstructions as initial conditions

Retrospective decadal predictions of ocean and land carbon uptake

Idealized perfect-model experiments to investigate mechanisms of C uptake predictability in the ocean.

C4MIP requirements

DECK (CO2-concentration-driven)
-piControl (500 years)
-historical (165 years, 1850-2014)
-1pctCO2 (141 years)
EC-Earth + PISCES + LPJ-GUESS non-interactive mode (no TM5)

947 years

DECK (CO2 emission-driven)
-esm-piControl (500 years)
-ems-hist (165 years, 1850-2014)
Tier 1
EC-Earth-CC :
IFS+NEMO+PISCES+LPJ-GUESS+TM5
751 years
-1pctCO2-bgc (141 years)
-esm-ssp585 (86 years, 2015-2100)

C4MIP status:

- spinup
concentration-driven almost completed
- extension of spinup for emission-driven starting soon.

Actual C4MIP production to start in September with publication on ESGF early November

Ocean BGC reconstructions

Experiment	3D-nudging (T\&S)	Surface restoring (SST\&SSS)	no-nudging
a1yp	Default: $\begin{aligned} & \tau(\mathrm{k}=2 \Leftrightarrow \mathrm{z}=1.5 \mathrm{~m})=3 \text { days } \\ & \tau(\mathrm{k}=10 \Leftrightarrow \mathrm{z}=14 \mathrm{~m})=3.1 \text { days } \\ & \tau(\mathrm{k}=20 \Leftrightarrow \mathrm{z}=61 \mathrm{~m}=3.2 \text { days } \\ & \tau(\mathrm{k}=30 \Leftrightarrow \mathrm{z}=180 \mathrm{~m}=3.8 \text { days } \\ & \tau(\mathrm{k}=40 \Leftrightarrow \mathrm{z}=500 \mathrm{~m})=5.6 \text { days } \\ & \tau(\mathrm{k}=46 \Leftrightarrow \mathrm{z}=950 \mathrm{~m})=9.2 \text { days } \\ & \tau(\mathrm{k}=50 \Leftrightarrow \mathrm{z}=1390 \mathrm{~m})=15.4 \text { days } \\ & \tau(\mathrm{k}=60 \Leftrightarrow \mathrm{z}=3000 \mathrm{~m})=84 \text { days } \\ & \tau(\mathrm{k}=70 \Leftrightarrow \mathrm{z}=4900 \mathrm{~m})=329 \text { days } \end{aligned}$	Default: $\begin{aligned} & \gamma_{\mathrm{T}}=-40 \mathrm{~W} / \mathrm{m} 2 / \mathrm{K} \\ & \gamma_{\mathrm{S}}=-150 \mathrm{~mm} / \text { day } \end{aligned}$	$3^{\circ} \mathrm{S}-3^{\circ} \mathrm{N}$
a1z8	$\begin{aligned} & \tau(\mathrm{M} . \mathrm{L} .<z<800 \mathrm{~m})=10 \text { days } \\ & \tau(\mathrm{z}>800 \mathrm{~m})=360 \text { days } \end{aligned}$	Default	$15^{\circ} \mathrm{S}-15^{\circ} \mathrm{N}$
a1zs	Default	$\begin{aligned} & \gamma \mathrm{T}=-600 \mathrm{~W} / \mathrm{m} 2 / \mathrm{K} \\ & \gamma \mathrm{~S}=-2250 \mathrm{~mm} / \mathrm{day} \end{aligned}$	$3^{\circ} \mathrm{S}-3^{\circ} \mathrm{N}$
a20w	Default	Default	$6.4^{\circ} \mathrm{S}-6.4^{\circ} \mathrm{N}$

Mole Concentration NO3 (Exp. alyp - Climatology WOA)

Mole Concentration NO3 (Exp. alzs - Climatology WOA)

Mole Concentration NO3 (Exp. alz8-Climatology WOA)

Mole Concentration NO3 (Exp. a20w - Climatology WOA)

Equatorial Atlantic (-7 7N, -30-10E) - time series metrics

Equatorial Pacific (-10 10N, -135 -95E) - time series metrics

