
Improving the I/O scalability
for the next generation of
Earth system models:
OpenIFS-Cassandra
integration as a case study

Authors: Xavier Yepes-Arbós, Pol Santamaria
Co-authors: Kim Serradell, Yolanda Becerra
Contributors: Jesus Labarta, Harald Servat

26/09/2019 NEXTGenIO Workshop on applications of NVRAM storage
to exascale I/O, ECMWF, UK

Introduction

• Earth system models have benefited of the exponential growth
of supercomputing power

• This allows to use more complex computational models to find
more accurate solutions

• As a consequence, the generated amount of data has grown
considerably

2
Source: Annual Report 2015, ECMWF

Introduction

• However, since the I/O was not significant enough in the past,
not much attention was paid to improve it

• Due to this reason, some Earth system models output data
using inefficient sequential I/O schemes

• This type of scheme requires a serial process:
• Gather all data in the master process of the model
• Then, the master process sequentially writes all data

• This is not scalable for higher grid resolutions, and even less,
for future exascale machines

• This is the case of the I/O scheme of the OpenIFS model

3

OpenIFS model

• OpenIFS is a free and simplified version of the Integrated
Forecasting System (IFS), available under a license from the
European Centre for Medium-Range Weather Forecasts
(ECMWF)

• IFS is a global data assimilation and forecasting system which
includes the modelling of the atmospheric composition

• Originally developed for weather forecasting, IFS writes using
the GRIB format

4

GRIB format

• General Regularly-distributed Information in Binary form
(GRIB) is a concise data format commonly used for Numerical
Weather Prediction (NWP) output

• It is designed to be:
• Self-describing
• Compact
• Portable across computer architectures

• In addition, it offers high performance for I/O operations to
meet critical time-to-solution requirements

5

Post-processing in OpenIFS

• OpenIFS can be also used for climate modelling if coupled into
an Earth system model, such as EC-Earth

• However, it is necessary to perform some post-processing,
including, but not limited to:

• Convert GRIB files to netCDF files
• Regridding
• Transform spectral fields to grid-point fields
• Compute diagnostics

• Post-processing turns into an expensive process, which will
increase in cost, complexity and size as a result of increasing
the resolution

6

Queries in OpenIFS

• Global-scale simulations over a large period of time produce a
huge amount of data

• OpenIFS data is written “as it is” into the storage system
• However, most of the time users are not interested in all data
• When users want to query a subset of the data, they have to

post-process (or filter) entire files
• This is a slow and inefficient process difficult to parallelize

7

Storage
system

GRIB
files

netCDF
files

Sequential write

Sequential post-processing

Data visualization

Proposed I/O scheme

• As said, OpenIFS has a bottleneck in the sequential I/O scheme
which uses a master-workers architecture

• This known issue is being addressed in the ESiWACE2 project

• Our solution is to adapt OpenIFS to perform distributed I/O

• To avoid moving the bottleneck from the model to the storage
system, we opted for a distributed masterless database to
store and query data: Apache Cassandra

• The main reasons are:
• Resilience and scalability: to petabytes of data and thousands of nodes
• Indexation: efficient distributed queries
• Open-source

8

Distributed architecture

9

Traditional architecture Proposed architecture

Why Cassandra?

Apache Cassandra is a distributed, highly-scalable, and
fault-tolerant Key-Value database.

• Pros:
• Distributed storage, highly scalable
• Manages coherency, corruption and concurrent access

• Cons: Bad HPC integration
• IPoverIB
• Scales up to few cores
• Client based on thread pool that interferes with simulation
• Not integrated with HPC queue systems

10

We tested several data models

1) Represent each grid point as a row to distributed arrays.
• Pros: Easy to implement
• Cons: Millions of small insertions → Overhead

2) Arrays are partitioned and distributed.

• Our tool Hecuba partitions the arrays
• Transparent to the client → simplifies its implementation

• We chose to partition the array into 4K chunks to avoid
congesting Cassandra.

11

OpenIFS configurations evaluated

• OpenIFS 40r1

• Initial conditions: storm Xaver (1 December 2013) →
maximum forecast length of 8 days

12

AMIP HighResMIP Theoretical

Resolution T255L91 T639L137 T1279L137

MPI processes 47 141 752

OpenMP threads 2 2 2

Time step 2700 seconds 900 seconds 600 seconds

OpenIFS configurations evaluated (2)

13

AMIP HighResMIP Theoretical

Resolution T255L91 T639L137 T1279L137

Forecast length 8 days 8 days 4 days*

Output frequency 3 hours
(4 time steps)

3 hours
(12 time steps)

1 hour
(6 time steps)

Total size GRIB files 9 GB 80 GB 795 GB

Total size Cassandra
(replication factor 1)

37 GB 355 GB 4224 GB

*Quota exceeded issue

HPC platform used

• MareNostrum 4

• Lenovo system composed of:
• SD530 Compute Racks
• Intel Omni-Path high performance network interconnect
• SuSE Linux Enterprise Server

• Compute nodes are equipped with:
• 2 sockets Intel Xeon Platinum (Skylake) with 24 cores each (48 cores

per node)
• 96 GB of main memory
• 100 Gbit/s Intel Omni-Path
• 10 Gbit/s Ethernet

• IBM GPFS file system

14

OpenIFS performance comparison

15

Performance Analysis

• Different output size (1 to 4.5 ratio GRIB files vs. Cassandra)
• Data is stored in Cassandra using double precision but GRIB stores

using a scale factor + offset to use variable precision

• Spectral fields transformed to grid-point fields prior to output
only with Cassandra

• Cassandra integration with HPC hardware could be improved

• Slightly slower than files but the benefits are on queries:
• Efficient filtering (post-processing operations) and sampling
• Distributed computing
• Concurrent access while data is generated

16

BSC-Intel collaboration

• Apache Cassandra adapted by Intel to run on the Intel(R)
Optane(TM) DC Persistent Memory

• Will boost the performance of both OpenIFS and post-processing
applications

17

Common post-process operations

• Regridding
Reduced Gaussian to
rectangular

• Temporal queries over a period of time: average, maximum,
minimum, cumulate, etc

• Spatial queries: regional domain extraction, collapsing in the
vertical direction or in the horizontal, etc

18

Post-process workflow

• Typical approach for implementing queries in the Earth Science
domain:

• Bash or Python script that manipulates the OpenIFS output files. Filters
entire files, and each post-process step generates new files.

• Our proposal: parallel post-processing using PyCOMPSs and
Hecuba

• PyCOMPSs offers an automatic parallelization of sequential code
• Hecuba offers a transparent access to persistent objects in Cassandra

19

Conclusions

• Room for improvement: Cassandra’s C++ Client makes use of
threads, which conflict with MPI

• Potential benefits for the post-processing operations
• Parallel execution
• Easy to implement
• Possibility of using standard libraries to manipulate the data (NumPy)

• Intel’s Cassandra is promising: we expect a performance boost
thanks to the Intel(R) Optane(TM) DC Persistent Memory

20

Future work

• Understand the impact on OpenIFS of the Cassandra client
threads

• Complete and evaluate the distributed queries

• Write data in double, single or smaller precision depending on
the user needs

• Evaluate OpenIFS taking advantage of Intel’s Cassandra in a
distributed environment

21

Thank you

xavier.yepes@bsc.es
pol.santamaria@bsc.es

