

Choices in the verification of S2S forecasts and their implications for Climate Services

Andrea Manrique-Suñén¹, Nube Gonzalez Reviriego¹, Verónica Torralba¹, Nicola Cortesi¹ and Francisco J. Doblas-Reyes^{1,2}

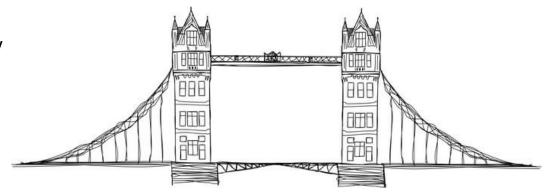
- (1) Barcelona Supercomputing Center
- (2) Institució Catalana de Recerca i Estudis Avançats

S2S Research-to-Operation and Forecast Verification Webinar

Outlook

- 1. Challenges in climate services
- 2. Challenges in verification of S2S predictions
- 3. How choices in the verification affect skill scores

Climate Services

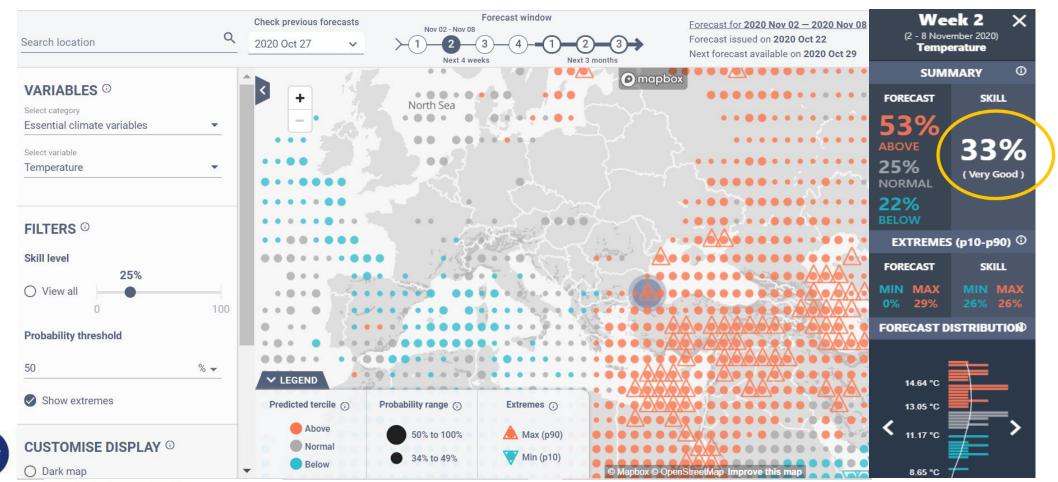

- S2S forecast range corresponds to timing useful for many societal sectors
- The uptake of S2S predictions into actionable decisions comes with many challenges

Challenges of climate services

User: How much energy will I produce next month?

Scientist: Probabilistic information, skill assessment, bias adjustment, etc.

- 1. The **probabilistic** nature of climate predictions
 - Convey probabilistic information in a clear way (i.e. most likely tercile map)
 - Convert a probability in to an actionable decision
- 2. Expectations on **quality** of predictions to increase usability:
 - Provide predictions with associated information on skill
 - Skill scores, not only how good, but home much better than a reference (i.e. RPSS)
 - Seasonal and regional dependence of skill



Example of a climate service: S2S4E Project Decision Support Tool

Fair RPSS

For tercile

categories

Challenges in the verification of S2S predictions

Forecast

- Heterogeneity in the subseasonal systems
- Quality measure employed
- Limited data (forecast/ hindcast)
 - 1. Sample size for probabilistic skill scores
 - 2. Definition of the climatology
 - 3. Application of bias adjustment

Status on 2020-10-27	Time range	Resolution	Ens. Size	Frequency	Re- forecasts	Rfc length	Rfc frequency	Rfc size
BoM (ammc)	d 0-62	T47L17	3*11	2/week	fixed	1981-2013	6/month	3*11
CMA (babj)	d 0-60	T266L56	4	2/week	on the fly	past 15 years	2/week	4
CNR-ISAC (isac)	d 0-32	0.75x0.56 L54	41	weekly	fixed	1981-2010	every 5 days	5
CNRM (Ifpw)	d 0-47	T255L91	25	weekly	fixed	1993-2017	every 7 days	10
ECCC (cwao)	d 0-32	39 km L45	21	weekly	on the fly	1998-2017	weekly	4
ECMWF (ecmf)	d 0-46	Tco639/319 L91	51	2/week	on the fly	past 20 years	2/week	11
HMCR (rums)	d 0-61	1.1x1.4 L28	20	weekly	on the fly	1985-2010	weekly	10
JMA (rjtd)	d 0-33	TI479/TI319L100	50	weekly	fixed*	1981-2010	2/month	13
KMA (rksl)	d 0-60	N216L85	4	daily	on the fly	1991-2016	4/month	3
NCEP (kwbc)	d 0-44	T126L64	16	daily	fixed	1999-2010	daily	4
UKMO (egrr)	d 0-60	N216L85	4	daily	on the fly	1993-2016	4/month	7

Hindcasts

Verification setup in our study

ECMWF-Ext-ENS 2016 System

Hindcast period: 1996-2015, 11 members

• Reference: ERA- Interim reanalysis

• Bias adjustment: Simple bias correction

Target forecast weeks

• Fair RPSS for tercile categories / Fair CRPSS

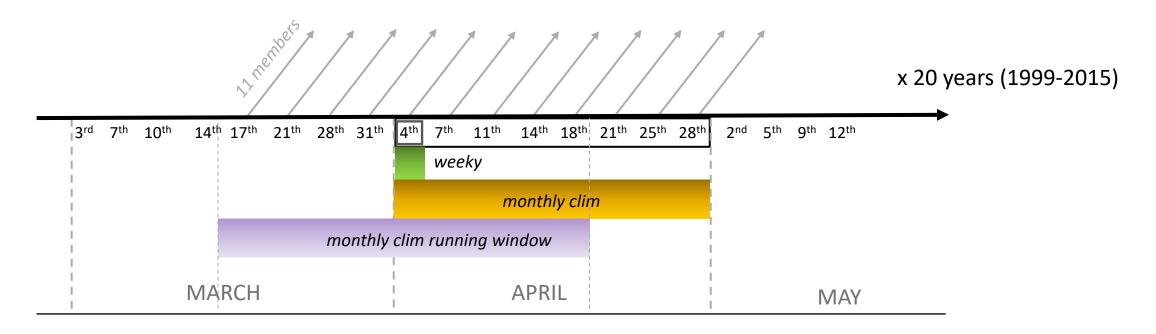
$$SS = \frac{S_{fcst} - S_{clim}}{S_{perf} - S_{clim}} \qquad \begin{cases} SS > 0 \text{ Forecast is better than climatology} \\ SS < 0 \text{ Forecast is worse than climatology} \end{cases}$$

 $S_{c} = S_{c}$

$$y_{ij} = (x_{ij} - \bar{x}) \frac{\sigma_{ref}}{\sigma_e} + \bar{o}$$

y_{ij} adjusted forecast,x_{ij} j: member, i: year

week 1 week 2 week 3 week 4
days 5-11 days 12-18 days 19-25 days 26-32


Startdate e.g. Monday

Sample size for skills cores: 2 options

Definition of climatology: 3 options

Choices in sample size for the skill score and definition of climatology

SKILL SCORE:

- Single start date: 1 start date, 20 years
- Monthly start dates: 8/9 start dates, 20 years

CLIMATOLOGY:

Weekly: 1 start date, 20 years

Monthly: All start dates in a calendar month, 8/9 start dates, 20 years Monthly running window: Running window with 4 start dates before

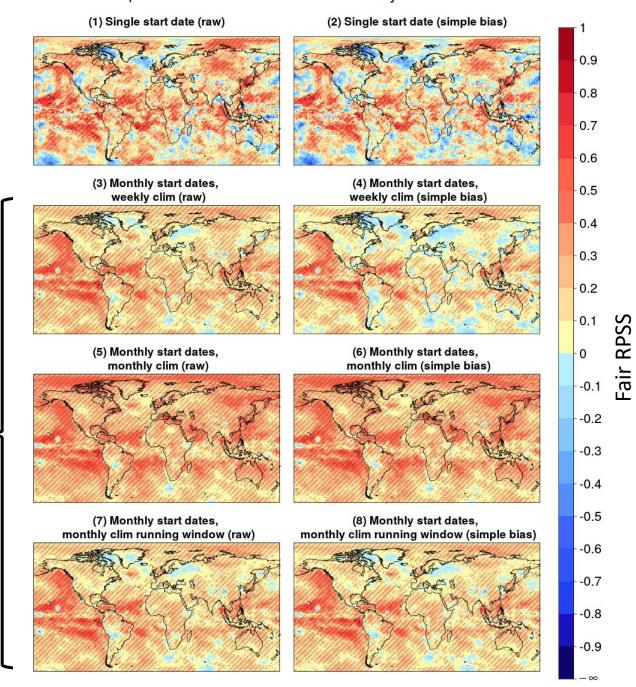
and after the target week, 9 start dates, 20 years

Climatology used for:

- Reference for anomalies
- Benchmark forecast
- Bias adjustment

Verification setups

Methodology	Skill score	Climatology	Bias correction
1	Single start date (1 start date)	Weekly (1 start date)	Raw
2	Single start date (1 start date)	Weekly (1 start date)	Simple bias adjustment
3	Monthly (concatenating 8/9 start dates)	Weekly (1 start date)	Raw
4	Monthly (concatenating 8/9 start dates)	Weekly (1 start date)	Simple bias adjustment
5	Monthly (concatenating 8/9 start dates)	Monthly (8/9 start dates)	Raw
6	Monthly (concatenating 8/9 start dates)	Monthly (8/9 start dates)	Simple bias adjustment
7	Monthly (concatenating 8/9 start dates)	Monthly running window (9 start dates)	Raw
8	Monthly (concatenating 8/9 start dates)	Monthly running window (9 start dates)	Simple bias adjustment



Same hindcast, 4 ways to perform forecast quality assessment (fair RPSS)
Var: 2m temperature

Concatenating startdates 8/9*20 yrs data-obs pairs

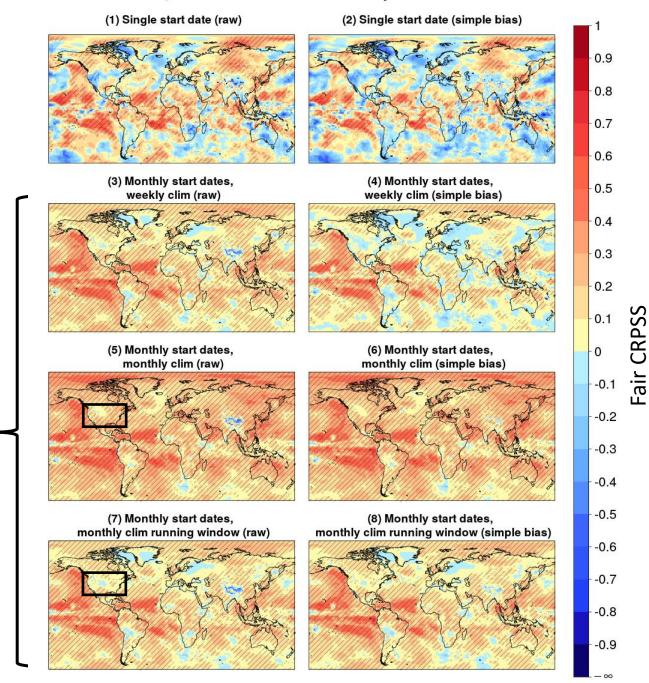
April Fair RPSS terciles - Fcst time: Days 12-18

Single start date:

Too noisy to compute skill score (20 data-obs pairs)

Weekly climatology Simple bias adjustment degrades skill

Monthly climatology
Apparently good skill but ...
(... next slide)


Monthly climatology running window

More robust climatology for bias adjustment – less degradation

April Fair CRPSS - Fcst time: Days 12-18

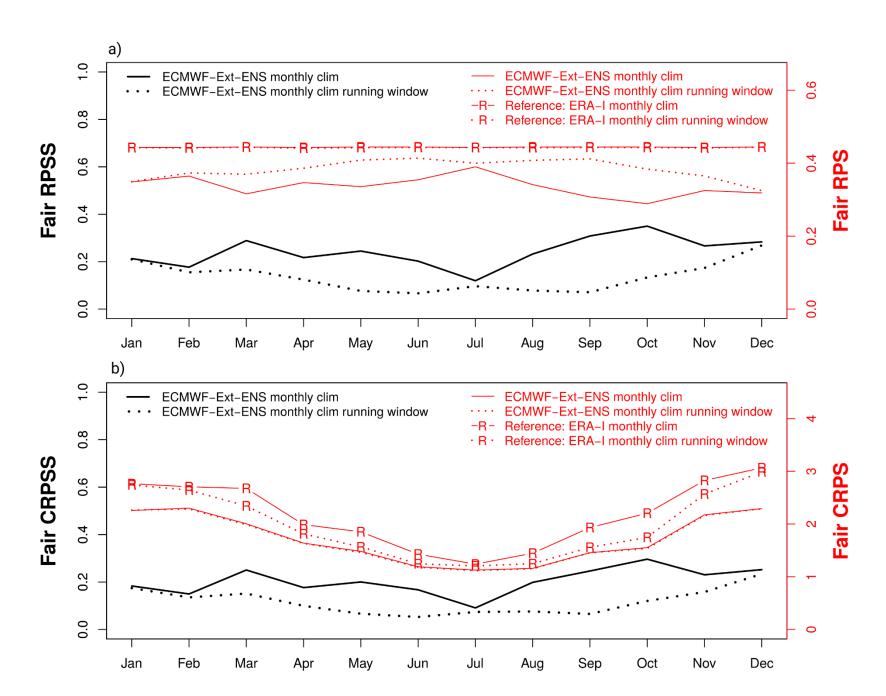
Same hindcast, 4 ways to perform forecast quality assessment (fair CRPSS) Var: 2m temperature

Concatenating startdates 8/9*20 yrs data-obs pairs

Too noisy to compute skill score (20 data-obs pairs)

Weekly climatology Simple bias adjustment degrades skill

Monthly climatology
Apparently good skill but ...
... (next slide)


Monthly climatology running window

More robust climatology for bias adjustment – less degradation

Annual evolution for a region in North America, for forecast days 12-18

Conclusions

- SAMPLE SIZE: One single start date is not enough for a robust skill score with a 20 years hindcast.
 Concatenating several start dates is a good approach to increase the sample size and produce robust skill scores
- BIAS ADJUSTMENT: The reference climate distribution to bias adjust weekly averages should span a longer period than one month
- CLIMATOLOGY: The aggregation period to compute the climatology should be centered around the target week. Using a calendar month to compute climatology can lead to "artificial skill" when computing skill scores.
- --> It is fundamental to carefully document all verification procedures!

Thank you, Questions?

Publication:

Manrique-Suñén, A., N. Gonzalez-Reviriego, V. Torralba, N. Cortesi, and F. J. Doblas-Reyes, 2020: Choices in the Verification of S2S Forecasts and Their Implications for Climate Services. *Mon. Wea. Rev.*, **148**, 3995–4008, https://doi.org/10.1175/MWR-D-20-0067.1.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776787.

andrea.manrique@bsc.es