
AWICM3-XIOS
workshop

Xavier Yepes-Arbós

2/12/2021 AWI, Bremerhaven, Germany
1

Index

2

1. Who we are

2. Context

3. OpenIFS-XIOS usage

4. Optimal XIOS setup

5. AWICM3-XIOS results

1. Who we are

Computational Earth Sciences Group

4

Performance Team
• Provide HPC Services (profiling, code audit, …)
• Apply new computational methods

Models and Workflows Team
• Development of HPC user-friendly software framework
• Support the development of atmospheric research software

Data and Diagnostics Team
• Big Data in Earth Sciences
• Provision of data services
• Visualization

Performance Team

5

• The necessary refactoring of numerical codes is given a lot of attention and is stirring a number

of discussions.
• Computational performance analysis and new optimizations are needed for actual numerical

models.

• Studying new algorithms for the new generation of high performance platforms (path to exascale).

• We are collaborating with several institutions on different projects working together in the

same direction.

2. Context

Objective: Integrate XIOS

7

• The I/O issue is typically addressed by adopting scalable parallel I/O solutions such as XIOS.

• The XML Input/Output Server (XIOS) is an asynchronous MPI parallel I/O server developed by

the Institute Pierre Simon Laplace (IPSL).

• XIOS is a widely I/O tool used in the climate community because of these features:
• Output files are in netCDF format.

• Written data is CMIP-compliant (CMORized).

• It is able to post-process data inline to

 generate diagnostics.

• XIOS is thought to address:
• The inefficient legacy read/write process.

• The unmanageable size of “raw” data by

implementing inline post-processing.

OpenIFS-XIOS integration scheme

8

OpenIFS-XIOS integration summary

9

• Scientific highlights:
• Both grid-point and spectral fields (transformed to grid-point space using TRANS) are supported.

• All surface and 3D fields can be output.

• Different vertical levels are available: model, pressure, theta and PV levels.

• No longer needed to set up the FullPos namelist (NAMFPC).

• FullPos spectral fitting is available.

• Physical tendencies and fluxes output (PEXTRA fields) are also supported.

• Computational performance highlights:

• In-depth benchmarking: small data output overhead with enough computational resources.

Computational performance of the integration

10

Output schemes comparison Output schemes comparison including post-processing

11

https://doi.org/10.5194/gmd-2
021-65

https://doi.org/10.5194/gmd-2021-65
https://doi.org/10.5194/gmd-2021-65

3. OpenIFS-XIOS usage

Introduction

13

• The XIOS basic usage explanation will be done interactively using the terminal.

• For more advanced XIOS features and functionalities check this tutorial.

• You can also check the official XIOS webpage.

• This section also contains slides that review XIOS aspects that are particular to OpenIFS.

• A complete OpenIFS-XIOS user guide is available in this ECMWF webpage.

http://forge.ipsl.jussieu.fr/ioserver/raw-attachment/wiki/training_2020/XIOS-formation-dev.pdf
http://forge.ipsl.jussieu.fr/ioserver
https://confluence.ecmwf.int/pages/viewpage.action?pageId=235606598

XIOS XML files for OpenIFS

14

• iodef.xml: it contains basic XIOS parameters.

• context_oifs.xml: it contains FullPos parameters to tune the vertical interpolations.

• axis_def_oifs.xml: it defines the different types of vertical levels available.

• domain_def_oifs.xml: it defines the different domains (or types of grids) available.

• grid_def_oifs.xml: it defines the grids (XIOS terminology) available used to map fields.

• field_def_oifs.xml: it defines all the available fields to be output.

• file_def_oifs.xml: it defines netCDF files to be written.

FullPos parameters

15

• It is possible to control some FullPos variables.

• FullPos spectral fitting:
• NFITP

• NFITT

• NFITV

• Other types of variables:
• NFPCLI

• LFPQ

• LTRACEFP

• RFPCORR

Define different regular Gaussian domains

16

• OpenIFS has two default grids:
• Native reduced Gaussian grid.

• Regular lat-lon grid with 256 latitudes and 512 longitudes.

• It is possible to change the sizes of the regular grid or even to declare more than one regular

grid. There are two key attributes:
• 'ni_glo': the number of longitudes.

• 'nj_glo': the number of latitudes.

• It is necessary to specify ‘generate_rectilinear_domain’ and ‘interpolate domain’ to indicate

that a horizontal interpolation (remapping) is needed.

Enable regular lat-lon grid output

17

• To output a field in a regular lat-lon grid it is necessary to use the attribute 'grid_ref'.

• For example, to output the 3D temperature field in a 256x512 lat-lon grid and model levels, you

can use this XML code:

where 'regular_ml' is defined in grid_def_ifs.xml as follows:

Understanding output frequency, sampling frequency, NFRHIS and NFRPOS

18

• It is necessary to distinguish between the scope of attributes

• 'output_freq' and 'freq_op' -> XIOS

• 'NFRHIS' and 'NFRPOS' -> FullPos.

• 'output_freq': it controls the writing frequency of a netCDF file.

• 'freq_op': it controls the sampling frequency, this is, the frequency of sending data from

OpenIFS to XIOS.

• 'NFRHIS' & 'NFRPOS':
• They control the post-processing frequency of FullPos and the TRANS package to transform spectral

fields to grid-point fields.

• Must be set up taking the greatest common divisor (gcd) of all 'freq_op' values defined.

• Note that always 'NFRHIS' = 'NFRPOS'.

Understanding output frequency, sampling frequency, NFRHIS and NFRPOS

19

Example: you want to output these three variables:

• 't': output every 6 hours the average of hourly data. You should set up 'output_freq=6h' and

'freq_op=1h'.

• 'u': output every 12 hours the maximum of 3 hourly data. You should set up 'output_freq=12h'

and 'freq_op=3h'.

• 'cc': output every 6 hours instant data. You should set up 'output_freq=6h' and 'freq_op=6h'.

• 'NFRHIS' and 'NFRPOS' must be set up taking the gcd of 'freq_op' values across all fields ('t', 'u'

and 'cc'), which is 1h. If the time step duration is 900 seconds for instance, then 'NFRHIS' and

'NFRPOS' should be set up to 4 (1h).

• It is also possible to specify these two FullPos variables in hours by using negative values:

'NFRHIS' = 'NFRPOS' = '-1'

Not correctly setting freq_op, NFRHIS and NFRPOS

20

It is very important to correctly set up 'NFRHIS' and 'NFRPOS' to produce correct data and do not

waste computational resources:

• If 'NFRHIS' and 'NFRPOS' use a smaller value than the gcd, FullPos would be called unnecessarily

(post-processed data will not be sent to XIOS as it is not required). This increases the computational

cost with no gains in the accuracy of the results.

• If 'NFRHIS' and 'NFRPOS' use a bigger value than the gcd, FullPos would not be called enough times

(post-processed data will not be correct).

Optimizations for sending data from OpenIFS processes to XIOS servers

21

• There are two available optimizations that might be useful to improve the execution time under

some circumstances. It is not possible to predict in which conditions (many factors), so it is

necessary to test them.

• They are disabled by default, but can be enabled in context_ifs.xml:
• 'LOPT_SEND': it enables a mechanism to change where data is sent from XIOS clients (OpenIFS

processes) to XIOS servers to truly overlap OpenIFS computations with XIOS communications.

• 'LSINGLE_PREC_SEND': it sends data from XIOS clients to XIOS servers in single precision (32 bits)

instead of double precision (64 bits). This allows you to send half of the data to decongest the

network.

4. Optimal XIOS setup

What factors affect XIOS performance?

23

There are several factors that can be tuned to directly improve the XIOS performance:

• Number of servers

• Number of dedicated nodes for servers

• ‘one_file’ vs. ‘multiple_file’ mode

• ‘optimal_buffer_size’

• ‘buffer_size_factor’

• 2-level server mode in combination with “time series”.

• Lustre striping

What factors affect XIOS performance?

24

There are other factors that can implicitly impact on the XIOS performance:

• Optimization compilation flags

• MPI placing

• Output size

• Output frequency

• Arithmetic and temporal operations such as averages

• Spatial operations such as remapping

XIOS resources

25

• Theses two factors are critical to make XIOS scalable:

• Number of XIOS servers.

• Number of dedicated nodes for XIOS servers.

• Having more XIOS nodes increases the bandwidth between model processes and servers, which

is necessary to perform an asynchronous and fast transfer.

• Having more XIOS servers increases the computational power on server side (beneficial

depending on the post-processing operation such as netCDF compression), but:
• Makes the ‘one_file’ mode slower.

• Data is spread across more netCDF files if ‘multiple_file’ mode is used (see 2-level server mode).

‘one_file’ vs. ‘multiple_file’ mode

26

• 'one_file' mode has a limited computational efficiency as it does not scale well when

outputting a large volume of data for high resolution configurations.

• 'multiple_file' mode achieves a good computational efficiency as it scales with many resources.

However, each XIOS server writes its own netCDF file, so output data is splitted between all

these partial files.
• It is necessary to study if there is any existing tool capable of efficiently combining these partial

netCDF files into a single one.

• If it does not exist, it would be necessary to develop such a tool, like in NEMO.

• Alternatively, we will see how to deal with this issue using the 2-level server mode and “time series”.

Buffer size settings

27

There are two parameters to control the buffer size to send data between clients and servers

• ‘optimal_buffer_size’: it controls whether using asynchronous or synchronous communications:

• ‘performance’: it uses as much memory as it is needed to bufferize all data between two output

periods, so it is the fastest option.

• ‘memory’: it uses the minimum amount of memory needed, so no performance at all.

• ‘buffer_size_factor’: XIOS automatically computes the size of the buffers. However, users can adjust

it using a multiplying factor.

2-level server mode

28

XIOS 2.5 offers a 2-level server mode where the pools of XIOS servers is distributed between 2 levels:

• Level 1: They are in charge of receiving the data from OpenIFS processes and redistributing it to subsets

of level-two servers (called pools).

• Level 2: They are in charge of writing netCDF files that contain the entire domain into the storage system.

Figure source: XIOS team

2-level server mode

29

• ‘using_server2’ -> it enables the 2-level server mode.

• ‘ratio_server2’ -> it specifies the percentage of XIOS server to be used in the second level.

• ‘number_pools_server2’ -> the number of subsets of servers within the second level. By default the

number of pools is equal to the number of servers.

Figure source: XIOS team

2-level server mode

30

When enabling ‘timeseries’ with 2-level server mode and one second level server per pool:

• Each field is written into a different netCDF file.

• Each file contains the entire domain of a field.

• Files are well-balanced across all second level servers.

Lustre filesystem

31

• The Lustre filesystem stores a file in one or more Object Storage Target (OST) devices.

• If OpenIFS is run on a cluster that uses Lustre it is important to pay attention to the striping, which allows

to divide a file into chunks that are stored in different OSTs.

• When using the 'one_file' mode, it is important to set up a striping for each netCDF at least as equal

as to the number of XIOS servers.

• This allows each XIOS server to write into a different OST, which prevents to affect the performance

of the whole system.

Spatial operations

32

• This kind of operations are very expensive depending on different parameters (number of fields, size of

the fields, frequency, etc), so it can have a large impact on the total execution time.

• Why? Because remapping is performed on the client side of XIOS, so OpenIFS processes have to first

interpolate before resuming the time stepping.

• Recommendation: use remapping when it is strictly necessary and not systematically.

Other performance considerations

33

• Optimization compilation flags: It is very important to pay attention in the optimization flags as

they might considerably affect the computational efficiency.

• Output size and frequency: These two factors directly affect the performance of XIOS. When

larger volume of output and at a higher frequency, more overhead.

• Arithmetic and temporal operations: These operations might have a cost increase that is part

of the critical path of OpenIFS.

• MPI placing: changing the default placing of XIOS servers might help to improve the

computational efficiency.

XIOS performance reports

34

• XIOS can generate performance reports for each client and server at the end of the execution.

• The client ones are really important to know if OpenIFS processes are blocked waiting for the send buffer

to be freed.

• The waiting ratio should be close to zero.

• The server ones are also important. The ratio shouldn’t be more than 60%.

5. AWICM3-XIOS results

Sequential I/O vs. XIOS on Juwels

36

• Tco95L91 (100 km) - CORE2

• Sequential I/O -> 124 SYPD

• XIOS -> 134 SYPD

• Tco159L91 (61 km) - CORE2

• Sequential I/O -> 60 SYPD

• XIOS -> 64 SYPD

• Tco319L137 (31 km) - DART

• Both output schemes achieve the same performance as FESOM is the limiting component.

NOTE: XIOS outputs data already averaged, remapped and in netCDF format.

Thank you

xavier.yepes@bsc.es

