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MareNostrum 4
“the most beautiful data center in the world”

SUPERCOMPUTING RESOURCES

Platform: CTE-Power9

Processors requested: 120 CPUs

Available memory: ~ 500 Gb

Consumed memory: ~ 100 Gb



Our approach



Our approach

● a model is trained separately for each grid point, variable and lead time

● the predictors are ECMWF forecasts for the same variable

● we train 4 methods and pick the best at each location

● we do not need a post-processed ensemble, just the tercile probabilities

“A point by point statistical correction of ECMWF forecasts that 

transforms raw ensemble output into calibrated tercile probabilities”



Implementation

A Jupyter notebook written in Python with 

• xarray for loading/working with multidimensional data

• dask for parallelizing computations

• scikit-learn to implement ML techniques

atomic function 
trains one method for one grid point, 
lead-time and variable.

apply_ufunc 
calls the atomic_function for each 
grid point, lead-time and variable and 
saves output as xarray.



Datasets

For training:

● ECMWF hindcasts of t2m and tp for 2000-2019, 11 members

● CPC categorical observations for 2000-2019

For prediction:

● ECMWF forecasts of t2m and tp for 2020, 51 members

(all data bi-weekly aggregated and as 
provided by the challenge)



train/test/predict strategy
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Leave-one-year-out 
cross-validation
(or 20-fold CV)

A model trained with all years
is used to forecast 2020

The performance for 2020 can be thought of as a random draw from the 
20-fold CV. We use the median RPSS across years to compare methods.



Data pre-processing

Large sample sizes are required for ML methods

● Compute anomalies wrt hindcast climatology

● Train all weeks of the year together



A hierarchy of methods

Climatology Raw ECMWF Logistic Regression Random Forest

Predictors None Full ensemble Ens. mean Full ensemble

Training parameters None 2 thresholds per week 
and grid point

2 coefficients per grid 
point

8 per grid point

Hyperparameters None None None 2 (fixed)

Training samples None 20 years per week 20y*53w = 1060 20y*53w = 1060

Features None 11/51 1 11/51

Predictors as 
anomalies

- no yes yes

num. models 1 53 weeks * 2 vars * 2 
leadtimes * 29040 grid 

points

2 vars * 2 leadtimes * 
29040 grid points

2 vars * 2 leadtimes * 
29040 grid points

simple methods complex methods



METHOD
Probability of ⅓ of observing each tercile category

Method 1 - Climatology

RATIONALE 
Ensure we don’t perform worse than climatology

RPSS 2000-2019



Method 2 - Raw ECMWF forecasts

RATIONALE 
Ensure we don’t perform worse than ECMWF raw forecasts

TRAINING 
For each week of the year compute the tercile edges in the hindcast (2000-2019)

PREDICTORS 
All ECMWF ensemble members of the variable of interest

METHOD 
Count proportion of ECMWF members exceeding the tercile edges

Implicit bias adjustment



Raw ECMWF: RPSS 2000-2019
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Method 3 - Logistic regression

RATIONALE 
The higher the ensemble mean, the highest the probabilities of above normal conditions

adapted from Leibovich-Raveh et al. (2018)
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x=ensemble mean anomaly

the sigmoid (or logistic) function



Logistic Regression: RPSS 2000-2019
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RPSS (median of Cross Validation)



Method 4 - Random Forest

RATIONALE 
Employ information from all the ensemble distribution

TRICKS
● Sort ensemble members before train/predict

● Subset members 1,6,11,...,51 for prediction

member #6 < 0

member #2 < -2 member #10 < 2

P(AN) = 60%
P(N) = 30%

P(BN) = 10%

P(AN) = 45%
P(N) = 30%

P(BN) = 25%

P(AN) = 25%
P(N) = 30%

P(BN) = 45%

P(AN) = 10%
P(N) = 30%

P(BN) = 60%

YES

YES

NO

YES NO NO

Example of a decision tree with sorted members

HYPERPARAMETERS (fixed)
● Depth = 4

● Number of trees = 100



Random Forest: RPSS 2000-2019
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RPSS (median of Cross Validation)



Best model: RPSS 2000-2019



Best model 2000-2019



Best method: RPSS 2020
t2

m

weeks 3-4                                                                                                weeks 5-6

RPSS 2020



RPSS by year (best method)



More info here:

https://renkulab.io/gitlab/lluis.palma/s2s-ai-challenge-bs
c/-/blob/master/notebooks/BSC_contribution.ipynb

llledo@bsc.es


