

Barcelona Supercomputing Center Centro Nacional de Supercomputación

BSC contribution to the WMO-S2S-AI CHALLENGE

Llorenç Lledó,

Sergi Bech, Lluís Palma, Andrea Manrique & Carlos Gómez

26/01/2022

S2S monthly webinar

The BSC team

ANDREA MANRIQUE Sub-seasonal prediction services

SERGI BECH Maths & computer science student

LLUÍS PALMA Operational S2S predictions engineer

LLORENÇ LLEDÓ Statistical post-processing of climate predictions

BSC Barcelona Supercomputing Center Centro Nacional de Supercomputación

MareNostrum 4

"the most beautiful data center in the world"

SUPERCOMPUTING RESOURCES

Platform:	CTE-Power9
Processors requested:	120 CPUs
Available memory:	~ 500 Gb
Consumed memory:	~ 100 Gb

Our approach

"A point by point statistical correction of ECMWF forecasts that transforms raw ensemble output into calibrated tercile probabilities"

- a model is trained separately for each grid point, variable and lead time
- the predictors are ECMWF forecasts for the same variable
- we train 4 methods and pick the best at each location
- we do not need a post-processed ensemble, just the tercile probabilities

Implementation

A Jupyter notebook written in Python with

- xarray for loading/working with multidimensional data
- *dask* for parallelizing computations
- scikit-learn to implement ML techniques

Datasets

For **training**:

- ECMWF hindcasts of *t2m* and *tp* for 2000-2019, 11 members
- CPC categorical observations for 2000-2019

For **prediction**:

• ECMWF forecasts of *t2m* and *tp* for 2020, 51 members

(all data bi-weekly aggregated and as provided by the challenge)

train/test/predict strategy

Train Predict and verify Predict and submit

Leave-one-year-out cross-validation (or 20-fold CV)

A model trained with all years is used to forecast 2020

The performance for 2020 can be thought of as a random draw from the 20-fold CV. We use the median RPSS across years to compare methods.

Data pre-processing

Center

Centro Nacional de Supercomputación

Large **sample sizes** are required for ML methods

- Compute anomalies wrt hindcast climatology
- Train all weeks of the year together

A hierarchy of methods

	Climatology	Raw ECMWF	Logistic Regression	Random Forest
Predictors	None	Full ensemble	Ens. mean	Full ensemble
Training parameters	None	2 thresholds per week and grid point	2 coefficients per grid point	8 per grid point
Hyperparameters	None	None	None	2 (fixed)
Training samples	None	20 years per week	20y*53w = 1060	20y*53w = 1060
Features	None	11/51	1	11/51
Predictors as anomalies	-	no	yes	yes
num. models	1	53 weeks * 2 vars * 2 leadtimes * 29040 grid points	2 vars * 2 leadtimes * 29040 grid points	2 vars * 2 leadtimes * 29040 grid points

simple methods

complex methods

Method 1 - Climatology

METHOD

Probability of $\frac{1}{3}$ of observing each tercile category

RATIONALE

Ensure we don't perform worse than climatology

	area	northern_extratropics	tropics	southern_extratropics	
lead_time					
t2m 14 days 28 days	14 days	0.0	0.0	0.0	
	28 days	0.0	0.0	0.0	
t2m	14 days	0.0	0.0	0.0	
	<mark>28 days</mark>	0.0	0.0	0.0	
			(7.17)	1.85	

Method 2 - Raw ECMWF forecasts

METHOD

Count proportion of ECMWF members exceeding the tercile edges

RATIONALE

Ensure we don't perform worse than ECMWF raw forecasts

TRAINING

For each week of the year compute the tercile edges in the hindcast (2000-2019)

Implicit bias adjustment

PREDICTORS

All ECMWF ensemble members of the variable of interest

Raw ECMWF: RPSS 2000-2019

tp

Method 3 - Logistic regression

RATIONALE

The higher the ensemble mean, the highest the probabilities of above normal conditions

Logistic Regression: RPSS 2000-2019

RPSS (median of Cross Validation)

Method 4 - Random Forest

RATIONALE

Employ information from all the ensemble distribution

TRICKS

- Sort ensemble members before train/predict
- Subset members 1,6,11,...,51 for prediction

HYPERPARAMETERS (fixed)

- *Depth = 4*
- Number of trees = 100

Example of a decision tree with sorted members

Random Forest: RPSS 2000-2019

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Best model: RPSS 2000-2019

Best model 2000-2019

Best method: RPSS 2020

RPSS by year (best method)

Barcelona Supercomputing Center Centro Nacional de Supercomputación

More info here:

https://renkulab.io/gitlab/lluis.palma/s2s-ai-challenge-bs c/-/blob/master/notebooks/BSC_contribution.ipynb

llledo@bsc.es