

VITIGEOSS (%)

VINEYARD INNOVATIVE TOOL BASED ON THE INTEGRATION OF EARTH OBSERVATION SERVICES AND IN-FIELD SENSORS

Applying user-centered design to the coproduction of climate services across time scales

VitiGEOSS vineyard management solution

<u>Marta Terrado</u>, Diana Urquiza, Isadora Christel, Andrea Manrique, Andria Nicodemou, Nube González-Reviriego, Nuria Pérez-Zanon

Barcelona Supercomputing Center (BSC-CNS) Department of Earth Sciences

Climate change impact on viticulture

'You have to protect the grapes from getting sunburn'

By Stav Dimitropoulos and Will Smale Business reporters

10 September 2020

Winemakers in many of the world's traditional wine regions now have to guard against their grapes being too ripe because of higher temperatures

NEWS

Spanish vineyards in danger from drought

04 JULY 2017 By Lucy Shaw

A lack of rain in Spain could spell disaster for both grape and olive growers this year temperatures wreak havoc across vineyards and olive groves.

Rainfall is currently at less than half the historic average in Spain

Grape growers hoping rain holds off •

Karen Coltman - 05:00, Jan 15 2022

1 💟 🚭 🖾 🙆

ROSS GIBLIN

<u>Responding to the needs of the viticulture sector</u>

- Optimise the vineyard management process through the use of open European Earth Observation services
- Combine different sources of information across different timescales tailored to the needs of grape growers and wine producers
- **Respond to future wine industry challenges** to boost vineyard sustainability, mitigate and adapt to the effects of climate change and promote local economic growth

1	
_	

Quinta do Ataíde (Portugal) - Symington Family Estates

Juneda (Spain) - Familia Torres Wines

Mirabella Eclano Estate (Italy) - Mastroberardino Società Agricola srl,

Seamless approach to different type of data sources

Intelligent services

Objectives/ outcomes

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Technologies

Seamless approach to different time scales

Weather forecasts

Weather forecasts are a familiar concept

Sub-seasonal and seasonal climate predictions

Temperature (Aranyó)

Seasonal forecast issued on Jun 2021

Seasonal forecast of temperature

Issued on 01 Nov 2020, valid for DJF

••••		· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • •
		•••••••••••••••••••••••••••••••••••••••
		• • • • • • • • • • • • • • • • • • • •
		· · • · · • • • • • • • • • • • • • • •
	••••••	• • • • • • • • • • • • • • • • • • •
	••••••	· · · • • · · · • • • • • • • • • • • •
		· · · · • • • • • • • • • • • • • • • •
	· · · · · · · · · · · · · · · · · · ·	n 2
	K. N	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
·····	i i a la constante da la constante da constante da constante da constante da constante da constante da constant	
	0 	
••••	0.0 · · · · · · · · · · · · · · · · · ·	
<u></u>	0 0 1 1 1 1 1 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
••••• <u>^^^^^^^^^</u>		
AAAAAAAAAAAA		
аналалалалалалалалалалалалалалалалалала		
		2
		Probability Eutromer
	Above normal	Probability Extremes
	 Above normal 	Probability Extremes
	Above normal	Probability Extremes
	 Above normal Normal 	Probability 50-100%
	 Above normal Normal 	Probability 50-100%
	 Above normal Normal Below normal 	Probability 50-100% 34-49% Extremes Upper extreme V Lower extreme

User-centered design approach

Individual interviews

Barcelona BSC Center

Visualisation aspects

- Terciles probabilities
- Forecast quality (skill)
- Extreme probabilities

Dashboards as a first step for integrating different information

•			Мара	Phenology									
Seleccionar la orden			Show fields	Disease alerts							Ara	anyó_Torres S.AVitig	
🜌 🛰 🖌	oductor ≜		Deenweather	Phenology Weather & Climate								Todos	
			Deep weather	Gráfico	Rud her	- king	A Play	<u> </u>	E-uit-e-t	Version	Pinening	Loof full A	
		-11	Agrolab PM1 Boyat	Parcela individual	week 9	zaking	week 22	week 2	Real Sec	sk 29 w	veek 33		
Active		tro	Agrolab PM1 NRST	Estadísticas	week 9		week 22	week 2	3 wee	-k 29 w	veek 33		
8	~		Agrolab PM2 NRST	Vista general	week 9		week 22	week 2	3 wee	ek 29 w	veek 33		
	2	\dashv	Agrolab_PM2_Royat		week 9		week 22	week 2	3 wee	ek 29 w	veek 33		
		S	Agrolab_PM3_NRST		week 9		week 22	week 2	3 wee	•k 29 w	veek 33		
		elecci	Agrolab_PM3_Royat		week 9		week 22	week 2	3 wee	•k 29 w	veek 33		
		όπ	Amadeus_2		week 9		week 22	week 2	3 wee	ek 29 w	veek 33		
			Roca Alta 1_B		week 9		week 22	week 2	3 wee	ek 29 w	veek 33		
			Roca Alta 1_V		week 9		week 22	week 2	3 wee	ek 29 w	veek 33		
🗸 🖨 Cultivo 🔺 Vari	edad 🔺		Showing 1 to 9 of 9 entr	ries								Previous 1 Next	
🗸 grape Gonfau	is 🗠												
grape Mazue	lo		Line harden		194-17	2.		Charles 1			STATA.		
✓ grape Merlot			And	F								Preview	of the
☑ grape Syrah							6443				Champion where a second	VitiGEO	SS vine
					2 Sector	- A	ALL ALL				All sectors and the local	manage	ment
					A CALC	Fruit Set				Lea	af Fall	solution	
		Bud Breaking	Blooming		TI				509	% - 60% of leaves fall. The	(undor d	lovolon	
			50-60% - Green tissue o	on the 50-60% - Flo	owers on all	Sometimes	ets bigger. the withered		100	pro	ves are colored and fall gressively. Beginning of	(under d	levelop

Take-home messages

- Having different types/sources of crop relevant information on a single platform facilitates the decision-making of grape growers and wine producers
- Having access to seamless climate information (integration of different temporal and geographical scales) is needed to support multiple types of decisions and user profiles
- Applying a user-centered design approach ensures that information is user relevant and that users can understand and apply it in their decision-making context
- Products integrating in a seamless way different sources of information, temporal and geographical scales and coproduced with users boost the uptake of services for climate adaptation. More research needed in methodological implementation of seamless approaches.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 869565.

VITIGEOSS (%)

VINEYARD INNOVACIVE TOOL BASED ON CHE INCEGRACION OF EARCH OBSERVACION SERVICES AND IN-FIELD SENSORS

Thank you!

marta.terrado@bsc.es

Barcelona Supercomputing Center Centro Nacional de Supercomputación

A project coordinated by:

