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Figure 1. Lyme disease cases in Germany. NUTS2 districts with compulsory notification of LD by 2021 (left), and time series of the incidence per 100,000

individuals grouped by Federal State (right).

Data
We used confirmed Lyme disease cases per NUTS2 district

reported to the German surveillance system in nine of the 16

Federal States. Time series of cases differed between Federal

States, with the longest period ranging from 2001 to 20215.

Population projections by NUTS2 district were extracted from the

German Statistics office for the entire study period6.

We used monthly values of mean, maximum and minimum

temperature, wind speed, relative humidity and accumulated

precipitation, extracted from the E-OBS repository7. Based on

the literature, we chose suitable land cover classes from the

CORINE‘s 2018 dataset and derived the overall environmental

suitability for Ixodes ricinus ticks per district8.

1 PhD Programme ‘Epidemiology’ , Braunschweig-Hannover, Germany 
2 Barcelona Supercomputing Center (BSC), Spain
3 Epidemiology Department, Helmholtz Centre for Infection Research, Germany
4 Center for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, UK
5 Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, UK
6 Catalan Institution for Research and Advanced Studies, Spain

Conclusion
These preliminary results indicate that surveillance data

can be used to quantify the influence of eco-climatic

processes on Lyme disease risk. However, delays in

reporting pathways and selection bias might influence the

ability of the models to accurately estimate the extent of

climate’s impact on disease risk. This study highlights how

climate products can be coupled with health services to

better understand transmission dynamics and influence

decision making in the public health sector.

Modelling Framework
We used a Bayesian spatiotemporal hierarchical mixed-model framework to compute the effects of environmental and climatic variables on monthly LD risk in Germany between 2001 and 2021. Assuming

LD case counts per district ‘i’ and month ‘t’, yit, followed a negative binomial distribution, we defined the mean risk it using the linear predictor,

log(it) =  + log(pi a(t)) + Σ
k
x

kit
+ m(t) + i a(t) + ui a(t)

where  is the intercept, pi a(t) is the annual population size per district, Σ
k
x

kit
is a combination of k environmental and climatic covariates with regression coefficients , m(t) and a(t) are a series of monthly

and yearly random effects, respectively, and i a(t) and ui a(t) are year-specific spatially structured and unstructured random effects. We then used a range of goodness of fit statistics to select the candidate

models with the highest performance compared to a reference model, containing random effects only.

Session S6: Impactos climáticos

Introduction
Lyme disease is a tick-borne disease widely distributed in the Northern Hemisphere affecting approximately 65,000 people per year1. It is caused by bacteria of the complex Borrelia burgdorferi s.l., which

is transmitted in Europe by Ixodes ricinus ticks1. In Germany, roughly 34.3 million euros are destined per year to treat patients with long term clinical manifestations of Borrelia infections2. Climatic and

environmental conditions are key drivers of tick developmental rates and feeding habits, as well as of human exposure. As a result, warmer months are associated with the Lyme disease season3. In the

context of a changing climate, shifts in the onset of the tick season are already being observed, indicating the relevance of climate patterns on disease risk4. In this study, we aim to quantify the role of

climate on the number of Lyme disease cases reported to the German surveillance system.

Results
Between 2001 and 2021 there were a total of 162,851 confirmed

Lyme disease cases in Germany. Highest incidence rates were

observed in predominantly rural areas, such as Brandenburg,

Mecklenburg-Vorpommern and Saxony.

The highest increase in goodness of fit was observed when

incorporating coniferous forests, humidity, wind speed,

accumulated precipitation and maximum temperature (final

model). Looking at the seasonal random effects, the final model

showed a small shift of their marginal effects towards zero

(Figure 2).

The inclusion of environmental and climatic variables changed

the pattern of the spatially structured random effects. The areas

in the map shaded in gold indicate that the inclusion of climate

helped to account for the spatial dependency and variation in

Lyme cases. Pink-shaded areas indicate the influence of

unmeasured processes (e.g., deer population, access to health

care, etc.).

Preliminary conclusion

• These results indicate that surveillance data can be

used to quantify the influence of eco-climatic processes

on Lyme disease risk.

• Delays in reporting pathways and selection bias might

influence the ability of the models to accurately estimate

the climate sensitivity of Lyme disease risk.

• This study highlights how climate products can be

coupled with health services to better understand

transmission dynamics and influence decision making in

the public health sector.

Next steps

• Further work will involve including additional

variables, such as deer habitat suitability and

elevation.

• Model exploration so far assumes a linear and

immediate effect of climatic drivers on disease risk.

Next steps involve expanding the range of

covariables and exploring the role of lagged effects

on disease risk, as well as non-linear associations.

• In case of a strong climate signal, projections will be

computed with combinations of RCP and SSP

scenarios.
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Figure 2. Seasonal random effects

Figure 3. Year-specific spatially structured random effects (2001-2021). Each map shows the standardized difference between the reference model, i.e. with

random effects only, and the final model, i.e. including random effects and explanatory variables. Positive values (pink-shaded areas) indicate that the

explanatory variables increased the mean effect of the spatially structured random effects. Negative values (gold-shaded areas) indicate where the

explanatory variables helped account for the spatial variation. Zero indicates no change between models.
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