
Accelerating
Atmospheric Models
using GPUs

Christian Guzman Ruiz

09/09/2019 Master thesis on Modelling for Science
and Engineering 1

Index

1. Introduction
2. Methodology
3. MONARCH introduction
4. MONARCH modules time-impact
5. Phlex-chem overview
6. Differential equation solver: CVODE
7. Phlex-chem on MONARCH
8. Phlex-chem: Derivative analysis
9. Phlex-chem: Multiple cells optimization
10. Conclusions and future work

2

Introduction

3

Introduction
● Atmospheric models are widely used in meteorological

institutions and investigation centers for weather forecast and
climate prediction studies

● The Multiscale Online Nonhydrostatic AtmospheRe CHemistry
model (NMMB-MONARCH or MONARCH) consumes thousands of
hours on Marenostrum IV supercomputer

● GPU potential on supercomputers is higher than CPU

4

Introduction: Objectives

1. Reduce the execution time of MONARCH

2. Study the potential of GPU implementations on Earth Science
models

-> Apply implementations focused on the GPU<-

Problem: Translate code to GPU is hard

5

Methodology

6

Methodology: Work

1. Search most time-consuming MONARCH component -> Chemistry
mechanism, phlex-chem option

2. Identify most time-consuming phlex-chem functions -> Derivative
3. Analyze most relevant function-> Develop a GPU basic version
4. Apply GPU Derivative and Deriv optimizations -> Speedup positive

for big mechanisms
5. Apply optimization to include more data in phlex-chem -> N cells

7

Methodology: Test Environment

Marenostrum IV:

- Peak Performance of 11.15 Petaflops
- 384.75 TB of main memory
- 3,456 nodes:

- 2x Intel Xeon Platinum 8160 24C at 2.1 GHz
- 216 nodes with 12x32 GB DDR4-2667 DIMMS (8GB/core)
- 3240 nodes with 12x8 GB DDR4-2667 DIMMS (2GB/core)

- Interconnection networks:
- 100Gb Intel Omni-Path Full-Fat Tree
- 10Gb Ethernet

- Compiler: ICC version 17.0.4

8

Methodology: Test Environment

CTE-POWER:

2 login nodes and 52 compute nodes, each of them:

- 2 x IBM Power9 8335-GTH @ 2.4GHz (3.0GHz on turbo, 20 cores
and 4 threads/core, total 160 threads per node)

- 512GB of main memory distributed in 16 dimms x 32GB @
2666MHz

- 2 x SSD 1.9TB as local storage
- 4 x GPU NVIDIA V100 (Volta) with 16GB HBM2.
- GPFS via one fiber link 10 GBit
- Compilers: GCC version 6.4.0 and NVCC version 9.1

9

MONARCH
introduction

10

MONARCH introduction: Components

11

MONARCH
components
computes a region
of the map divided
in points (cells)
over a number of
time-steps

MONARCH introduction: Chemistry
mechanisms

Three different solutions:

1. Euler-Backward-Iterative (EBI): Efficient and fast solver, fix code
with Carbon Bond 2005 (CB05) mechanism. Default solver

2. Kinetic PreProcessor (KPP): Partially run-time configured
mechanism

3. The Phlexible Module for Chemistry (Phlex-chem, provisional
name): Novel option, provide a flexible framework between
MONARCH and chemistry mechanisms.

12

MONARCH
modules

time-impact

13

MONARCH measurements

14

Default configuration

Solver: EBI

Mechanism: Carbon
Bond 2005 (CB05)

Focus on phlex-chem
-> Comfortable and
expensive

Phlex-chem
overview

15

Phlex-chem overview

● Allows user define chemical mechanisms through JSON input files

● Solve a set of equations:

phlex-chem -> y= r
1
X

1
 + r

2
X

2
 -> r

3
X

3
; CVODE -> y’= f(t,y)

● Predict the concentrations of some chemical reactants [X]

● Rate constants [r] are calculated by chemical reactions:

16

Differential
equation solver:

CVODE

17

Differential equation solver: CVODE
● Predict future

concentrations
(y’=f(t,y)) ->
CVODE

● Requires from
phlex-chem:

f(y) and J = ∂f /∂y

18

CVODE: KLU SPARSE

● KLU SPARSE store and compute the Jacobian matrix (∂f /∂y)

● SPARSE: Efficient structure for matrix with few nonzeros

r
1
X

1
 + r

2
X

2
 -> r

3
X

3

● KLU method
○ First setup: Symbolic factorization
○ Setup: KLU refactor and numerical conditioning (rcond)
○ Solve: Pivoting and forward and backward substitution

19

Phlex-chem on
MONARCH

20

Phlex-chem on MONARCH

● Phlex-chem executed by tests independently from MONARCH, but
from a MONARCH point of view

● Concepts summary:
○ State [X

N
]: Chemical concentrations array

○ Rates [r
N
]: Reaction rates, results of reaction equations

○ f(y): r
1
X

1
 + r

2
X

2
 -> r

3
X

3
○ Derivative: Solve f(y). CVODE needs it
○ Jacobian: Solve ∂f /∂y. CVODE needs it
○ Cell: Point of the map for MONARCH. Use all the system

variables. Cells are independent from each other

21

Phlex-chem on MONARCH: Data structure

● All the reaction related data are stored on the same array
structure: RXN

22

Phlex-chem on MONARCH: Workflow

23

Phlex-chem on MONARCH: Measurements

24

● CB05 mechanism
● 100 Time-steps *

100 Cells ->
10,000 solver
iterations

Phlex-chem on MONARCH: Measurements

25

● CVODE calls:
○ Derivative:

3-4
○ Jacobian: 1-2

● Mean function
time per
iteration is in the
order of µs

Phlex-chem on MONARCH: Measurements

26

● Flat profile
among all
functions

● Derivative and
Jacobian = 30%
Both are very
similar ->
Improve
Derivative

Phlex-chem:
Derivative analysis

27

Phlex-chem: Derivative workflow

● r
1
X

1
 + r

2
X

2
 -> r

3
X

3
 translates to SAXPY

 operations in Derivative & Jacobian:

y
i+1

 <- 𝛼x + y
i
 ; i=0, 1… N_RXN

28

GPU Derivative

● Parallelize reactions loop
● RXN loop deleted: Work distributed between

threads
● Added data transfers between CPU & GPU
● Atomic SAXPY operation

29

Basic Derivative

30

● Basic Derivative:
Simple script,
Similar function
without
phlex-chem or
CVODE

● Configuration:
○ CALLS: 1000
○ SPECIES: 100
○ N_RXN: 5000

Basic Derivative

31

Derivative GPU

32

● Configuration:
CB05 repeated,
10,000 calls

● Big mechanisms
are worth to
compute on GPU

● We can still
improve memory
access

Derivative GPU: Memory optimization

33

Phlex-chem:
Multiple cells
optimization

34

Phlex-chem: N cells

35

● Keys:
○ Cells data has no-dependance between them

○ GPU bottleneck is on data transfers

○ GPU works better with bigger data sizes

○ Monarch computes 10,800 cells per core by default

Phlex-chem: N cells

36

Set up N cells

● Few changes on the code
● Simple MONARCH test: Only arrhenius reaction, few species
● A lot of improvements:

○ Avoid reset variables each iteration
○ Reduce cache misses
○ Benefit from vectorization on RXN
○ Reduce calls of Derivative and Jacobian
○ Benefit from KLU SPARSE

37

CPU N cells: Results

38

GPU N cells

39

C
PU

G
PU

Reaction & Cell parallelization

GPU N cells: Results

40

● Compute: Fix
time

● Data: Time
increases slowly
respect number
of cells

● Bottleneck: Data
movement

GPU N cells: Results

41

● Notable
speedup for
translating only
Derivative to
GPU

● Working with
little GPU
capacity: MB of
data in front GB
and 4 GPU’s
available

Conclusions and
future work

42

Conclusions

● MONARCH Chemistry solver consumes 48.6% of the total
execution time

● CVODE consumes ~70% of time execution; Derivative and Jacobian
~30%

● GPU parallelization on RXN improves time from 2000 reactions
○ We speedup a bit optimizing memory access (~30%)
○ GPU works better with bigger data sizes

43

Conclusions

● Computing multiple cells data inside phlex-chem improves simple
MONARCH test by 12-14 times faster

● GPU with multiple cells gives 1.5x speedup only parallelizing
Derivative

-> Improve the general workflow is important as improve the
functions

-> GPU optimizes greatly complex modules but need a lot of work

44

Future work

● Implement optimizations in complex tests

● Implement optimized phlex-chem on MONARCH

● Heterogeneous optimization computing CPU & GPU
simultaneously

● Improve memory access on RXN: Reduce memory jumps & SPARSE

45

Thank you

