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* Apply a general method to study interannual
modes of Arctic sea ice variability.

* |dentify sources of predictability for Arctic
sea ice.

* Provide a framework to evaluate the capacity
of a given model to simulate Arctic sea ice
variability.
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Motivation: Beyond Sea Ice Extent

« Pan-Arctic sea ice extent is an important Arctic climate
metric, but has a limited applicability as a forecast product.

 Ability to predict the spatial variability can have several
practical applications:

- Low SIC autumn Barents-Kara ---> possible extreme
cold events in winter in E. Asia (Kug et al., 2016, Tang
et al. 2013, Cohen et al. 2014) & NAO impact.

- Low SIC autumn East Siberian-Chukchi ---> possible
extreme cold events in winter in N. America (Kug et al.,

2016).

- Information for shipping, fishing, local communities.



Methods

Data: 38 years (1979-2016) of continuous observations of
monthly Sea Ice Concentration (SIC) from NSIDC & monthly
North Atlantic Oscillation Index (NAOI) from NCEP-NOAA
(http://www.cpc.ncep.noaa.gov/).
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3. Area-weighted Empirical Orthogonal Functions (EOFs), top
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Methods

Data: 38 years (1979-2016) of continuous observations of
monthly Sea Ice Concentration (SIC) from NSIDC & monthly
North Atlantic Oscillation Index (NAOI) from NCEP-NOAA
(http://www.cpc.ncep.noaa.gov/).

Steps performed on the time series at each gridbox:

1. Monthly anomalies calculated by subtracting the
climatological seasonal cycle.

2. Detrending of series using quadratic polynomial fitting.
3. Area-weighted Empirical Orthogonal Functions (EOFs), top
twelve modes calculated using the R package s2dverification

(Guemas, Manubens et al.).

Associated Principal Component (PC) time series.
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First SIC mode: spatial
pattern

See e.g.: Deser et al.
2000-2004, 2007
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First SIC mode: principal component series
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e Typical mode of variability during winter (Max. in Feb.).
e Persistence decays (~4-5 months).
e Possible reemergence in the following winter.
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Results

Crosscorrelation between North Atlantic Oscillation
Index (NAQOI) & First SIC mode
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e NAOI precedes 1st PC of sea ice concentration.
e Maximum correlation (r = 0.33) with one month lag. .



Summary of modes @ ¢
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Mode (variance expla.) |[PC| max value
1(9%) Feb
2 (6%) Sep
3 (5%) Oct
4 (4%) Sep
5 (4%) Feb & Sep
6 (4%) Feb
7 (3%) Sep
8 (3%) Feb
9 (3%) Sep
10 (2%) Dec
11 (2%) Dec
12 (2%) Jun
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Main center of action:
East Siberian Sea
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Results: Third mode e §
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Preliminary results

* First EOF (mode) explains 9% of Arctic SIC variability,
typical of winter, persistence loss after 5-6 months with
possible remergence in following winter & is often

preceded by NAO.
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« Second EOF (mode) explains 6% of Arctic SIC

variability, typical of summer, persistence of ~5
months.
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Preliminary results

* First EOF (mode) explains 9% of Arctic SIC variability,
typical of winter, persistence loss after 5-6 months with
possible remergence in following winter & is often
preceded by NAO.

« Second EOF (mode) explains 6% of Arctic SIC
variability, typical of summer, persistence of ~5
months.

 Third EOF (mode) explains 5% of Arctic SIC variability,
typical of late summer early autumn, persistence of ~6
months, remergence in following summer(?).
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Next steps to refine analysis

 Normalizing adequately the monthly
variance to have fair EOF comparison.
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» Better estimates of persistence (e.g. simple

anomaly persistence, e-folding decay time,
refine significance levels).
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Next steps to refine analysis

 Normalizing adequately the monthly
variance to have fair EOF comparison.

» Better estimates of persistence (e.g. simple
anomaly persistence, e-folding decay time,
refine significance levels).

« Take into account the autocorrelation in time
series.

26



Next steps to gain understanding

« Compare against other large scale climatic
indices
- Study other potential sources of predictability
- Study physical mechanisms.
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progression of modes.
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Next steps to gain understanding

Compare against other large scale climatic
indices

- Study other potential sources of predictability
- Study physical mechanisms.

» Cross-correlations between different PCs and
extended EOF analysis ---> To evaluate
progression of modes.

« Evaluate models performing similar analysis.

* Any other ideas”? a0
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Thank you!

For further information please contact jacosta@bsc.es

The work described in this presentation is (partly) funded by the
European Union H2020 Research and Innovation programme under
Grant Agreement n. 727862
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19% (9%) 13% (6%) 11% (5%) 9% (4%)
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NAOI vs. PC2 NAOI vs. PC3

0.4
0.4

0.2
0.2

Crosscorrelatio
0.0
0.0

[aV} [aV}
o o
I I
< <
T T
-15 -10 -5 0 5 10 15 _1'5 -10 -5 0 5 10 15
Month lag Month lag

33



= 9 EXCELENCIA
Barcelona . SEVERO
X ra S I e S Supercomputing )
Center
Centro Nacional de Supercomputacion




EXCELENCIA
SEVER

E t " Barcelona 9 OCHOE
X ra S I e S Supercomputing )
Center
Centro Nacional de Supercomputacion

e —

R (S S S R (S

35



0 Barcelona 9
Extra slides
Center
Centro Nacional de Supercomputacion

_— s

.55 45 -35 25 -15 -5 5 1b 25 35 45 55

36



Barcelona 9 o
Methods

Center

Centro Nacional de Supercomputacion

Advantages:

* Broad and general

* No a-priori assumptions made

Limitations:
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Normalized detrended anomaly after lowpass filter
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- Fast Fourier Transform low-pass filter allows only temporal variability of oscillations with period longer
than 2 years.
- Linearly detrended after low-pass filter.



Sliding correlation coefficient

05

0.0

-05

-1.0

— T2leads
SIE leads

-10

Months of lead

Sliding correlation coefficient

1.0

0.5

0.0

0.5

1.0

20

30

Sliding correlation coefficient

Lag-lead series

NH)

1.0

05

0.0
|

05

1.0

— T2leads
SST leads

-10

—— SST leads
SIE leads

-10

Months of lead

20

30

Months of lead

20

30




Sliding correlation coefficient
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Normalized detrended anomaly after lowpass filter
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Fast Fourier Transform low-pass filter allows only temporal variability of oscillations with period longer
than 10 years.
Linearly detrended after low-pass filter.



Lag-lead series (NH)

Sliding correlation coefficient
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47% - 1.6 years

37% - 1.6 years

16% - 1 years
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24% — 1.1 years
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39% - 1.5 years 37% - 1.8 years 24% - 1.1 years 39% - 1.9 years 37% - 1.6 years 24% - 1.5 years
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