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Atmospheric models are a mathematical representation of atmospheric 
water, gas, and aerosol cycles.

Atmospheric models



Introduction | Background | Implementation | Test environment | Results | Conclusions

Atmospheric models are a mathematical representation of atmospheric 
water, gas, and aerosol cycles.

Atmospheric models

Resolution of chemical processes can take up to 80% 
of the time execution!
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State of the art - KPP GPU
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Michail Alvanos and Theodoros Christoudia, GPU-accelerated atmospheric 
chemical kinetics in the ECHAM/MESSy (EMAC) Earth system model , 2017

● Kinetic PreProcessor (KPP) is a 

analysis tool to solve chemical 

mechanisms using Rosenbrock 

methods

● KPP is widely used in the 

atmospheric community

● The GPU version for the EMAC 

climate model achieves up to 20x 

speedup against CPU single-core 

and 1.86x against 2 CPUs
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CAMP: Chemistry Across Multiple Phases 

Dawson, Guzman, Curtis, Acosta, et. al., Chemistry Across Multiple Phases (CAMP) version 1.0, GMD 2022
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CAMP: Chemistry Across Multiple Phases 

Dawson, Guzman, Curtis, Acosta, et. al., Chemistry Across Multiple Phases (CAMP) version 1.0, GMD 2022

Our 
objective!
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CAMP CPU Solver
● CAMP uses the Backward Differentiation Formula (BDF) from CVODE, which is a 

solver for ordinary differential equation (ODE) systems.

● BDF requires a linear solver package. The default option is the KLU algorithm for 

the CPU execution, while it also has a CUDA version of the Biconjugate Gradient 

(BCG) algorithm.



Implementation
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Block-cells (GPU parallelization strategy)

● Block-cells assigns each 

atmospheric cell to a GPU 

thread block

● Uses as many threads as 

chemical species

 
 

 

Guzman et. al. Studying a new GPU treatment for chemical modules inside CAMP, 19th ECMWF Workshop
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Block-cells (GPU parallelization strategy)

● Higher occupancy than 

traditional approaches (more 

threads computing data)

● 34x speedup against CPU 

single-thread for the CAMP BCG 

linear solver

 
 

 

Guzman et. al. Studying a new GPU treatment for chemical modules inside CAMP, 19th ECMWF Workshop
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Communicating data between threads

● All communications are 

performed at thread block level

● An example: A thread triggers 

an error due to a negative 

concentration

● The error is shared between the 

other threads in the block by 

using shared memory 

 
 

  



Test environment
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Hardware
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● CTE-POWER cluster: 

○ 2 x IBM Power9 8335-GTH @ 2.4GHz (3.0GHz on turbo, 20 cores and 4 
threads/core, total 40 cores per node)

○ 4 x GPU NVIDIA V100 (Volta) with 16GB HBM2. 

○ Compilers: GCC version 6.4.0 and NVCC version 10.2
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Software configuration
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Architecture Parallel resources Parallelization 
language

CPU 1, 40 MPI

GPU Nº of different chemical concentrations (species x 
cells)

CUDA

● The evaluation is performed over the code included in the most external loop in 
BDF. The code related to previous initializations is excluded.

● Chemical mechanism: Gas phase chemistry from Carbon bond 2005 (CB05) | 
Chemical species: 156 | Cells (ODE systems): 100-10,000 | GPU Shared memory 
size per block: 256 | CVODE absolute tolerance:  0.01% | BCG tolerance: 1.0e-30



Results
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Speed-up

● Up to 35x speedup in average vs 

single-thread

● Standard deviation around 2
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Speed-up against 40 processes

● 1.2x speed-up against a fully CPU node 

(40 MPI processes) 

● Since there’s no communication 

between threads, we estimate 4.8x 

speed-up using the full GPU resources 

in a node (4 GPUs)   -  Ongoing work



Introduction | Background | Implementation | Test environment | Results | Conclusions

Kernel profiling

● Some optimizations already 

performed (like adjusting the 

number of registers per thread)

● The register usage is likely 

preventing the kernel from fully 

utilizing the GPU

● This usage is mostly produced by 

the algorithm definition, which 

computes big data like the Jacobian 

matrix

  

 



Conclusions
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Conclusions
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● Our Block-cells strategy increase the GPU parallel threads against traditional 
implementations (Nº Threads = Nº Cells)

● The CUDA BDF loop performs up to 35x times faster than CPU single-thread

○ 1.2x speed-up against CPU using the fully resources node.

○ Since the load is independent between threads, we estimate up to 4.8x 
speedup using 4 GPUs per node. 

● The kernel profiling suggests a limitation on the performance by memory 

● Our approach can be used in more chemical applications thanks to the versatility of 
the CAMP module.
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Future work
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● Add multi-device functionality to compute up to 4 GPus per node.

● Balance load between CPU and GPU architectures. 

● Integrate our implementation inside an atmospheric model.
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christian.guzman@bsc.es


