
CAMP First GPU Solver: A
Solution to Accelerate Chemistry
in Atmospheric Models

7th ENES workshop

Christian Guzman Ruiz, Mario C. Acosta, Matthew
Dawson*, Oriol Jorba, Carlos Pérez García-Pando, Kim
Serradell

Barcelona SuperComputing Center
*National Center for Atmospheric Research (NCAR)

Introduction | Background | Implementation | Test environment | Results | Conclusions

BSC Departments

2

Background

Introduction | Background | Implementation | Test environment | Results | Conclusions

Atmospheric models are a mathematical representation of atmospheric
water, gas, and aerosol cycles.

Atmospheric models

Introduction | Background | Implementation | Test environment | Results | Conclusions

Atmospheric models are a mathematical representation of atmospheric
water, gas, and aerosol cycles.

Atmospheric models

Resolution of chemical processes can take up to 80%
of the time execution!

Introduction | Background | Implementation | Test environment | Results | Conclusions

State of the art - KPP GPU

6

Michail Alvanos and Theodoros Christoudia, GPU-accelerated atmospheric
chemical kinetics in the ECHAM/MESSy (EMAC) Earth system model , 2017

● Kinetic PreProcessor (KPP) is a

analysis tool to solve chemical

mechanisms using Rosenbrock

methods

● KPP is widely used in the

atmospheric community

● The GPU version for the EMAC

climate model achieves up to 20x

speedup against CPU single-core

and 1.86x against 2 CPUs

Introduction | Background | Implementation | Test environment | Results | Conclusions

CAMP: Chemistry Across Multiple Phases

Dawson, Guzman, Curtis, Acosta, et. al., Chemistry Across Multiple Phases (CAMP) version 1.0, GMD 2022

Introduction | Background | Implementation | Test environment | Results | Conclusions

CAMP: Chemistry Across Multiple Phases

Dawson, Guzman, Curtis, Acosta, et. al., Chemistry Across Multiple Phases (CAMP) version 1.0, GMD 2022

Our
objective!

Introduction | Background | Implementation | Test environment | Results | Conclusions

CAMP CPU Solver
● CAMP uses the Backward Differentiation Formula (BDF) from CVODE, which is a

solver for ordinary differential equation (ODE) systems.

● BDF requires a linear solver package. The default option is the KLU algorithm for

the CPU execution, while it also has a CUDA version of the Biconjugate Gradient

(BCG) algorithm.

Implementation

Introduction | Background | Implementation | Test environment | Results | Conclusions

Block-cells (GPU parallelization strategy)

● Block-cells assigns each

atmospheric cell to a GPU

thread block

● Uses as many threads as

chemical species

Guzman et. al. Studying a new GPU treatment for chemical modules inside CAMP, 19th ECMWF Workshop

Introduction | Background | Implementation | Test environment | Results | Conclusions

Block-cells (GPU parallelization strategy)

● Higher occupancy than

traditional approaches (more

threads computing data)

● 34x speedup against CPU

single-thread for the CAMP BCG

linear solver

Guzman et. al. Studying a new GPU treatment for chemical modules inside CAMP, 19th ECMWF Workshop

Introduction | Background | Implementation | Test environment | Results | Conclusions

Communicating data between threads

● All communications are

performed at thread block level

● An example: A thread triggers

an error due to a negative

concentration

● The error is shared between the

other threads in the block by

using shared memory

Test environment

Introduction | Background | Implementation | Test environment | Results | Conclusions

Hardware

15

● CTE-POWER cluster:

○ 2 x IBM Power9 8335-GTH @ 2.4GHz (3.0GHz on turbo, 20 cores and 4
threads/core, total 40 cores per node)

○ 4 x GPU NVIDIA V100 (Volta) with 16GB HBM2.

○ Compilers: GCC version 6.4.0 and NVCC version 10.2

Introduction | Background | Implementation | Test environment | Results | Conclusions

Software configuration

16

Architecture Parallel resources Parallelization
language

CPU 1, 40 MPI

GPU Nº of different chemical concentrations (species x
cells)

CUDA

● The evaluation is performed over the code included in the most external loop in
BDF. The code related to previous initializations is excluded.

● Chemical mechanism: Gas phase chemistry from Carbon bond 2005 (CB05) |
Chemical species: 156 | Cells (ODE systems): 100-10,000 | GPU Shared memory
size per block: 256 | CVODE absolute tolerance: 0.01% | BCG tolerance: 1.0e-30

Results

Introduction | Background | Implementation | Test environment | Results | Conclusions

Speed-up

● Up to 35x speedup in average vs

single-thread

● Standard deviation around 2

Introduction | Background | Implementation | Test environment | Results | Conclusions

Speed-up against 40 processes

● 1.2x speed-up against a fully CPU node

(40 MPI processes)

● Since there’s no communication

between threads, we estimate 4.8x

speed-up using the full GPU resources

in a node (4 GPUs) - Ongoing work

Introduction | Background | Implementation | Test environment | Results | Conclusions

Kernel profiling

● Some optimizations already

performed (like adjusting the

number of registers per thread)

● The register usage is likely

preventing the kernel from fully

utilizing the GPU

● This usage is mostly produced by

the algorithm definition, which

computes big data like the Jacobian

matrix

Conclusions

Introduction | Background | Implementation | Test environment | Results | Conclusions

Conclusions

22

● Our Block-cells strategy increase the GPU parallel threads against traditional
implementations (Nº Threads = Nº Cells)

● The CUDA BDF loop performs up to 35x times faster than CPU single-thread

○ 1.2x speed-up against CPU using the fully resources node.

○ Since the load is independent between threads, we estimate up to 4.8x
speedup using 4 GPUs per node.

● The kernel profiling suggests a limitation on the performance by memory

● Our approach can be used in more chemical applications thanks to the versatility of
the CAMP module.

Introduction | Background | Implementation | Test environment | Results | Conclusions

Future work

23

● Add multi-device functionality to compute up to 4 GPus per node.

● Balance load between CPU and GPU architectures.

● Integrate our implementation inside an atmospheric model.

Thank you

christian.guzman@bsc.es

