





Barcelona Supercomputing Center Centro Nacional de Supercomputación

The Challenge of the Anthropogenic CO<sub>2</sub> emissions verification in the coming years

**Verónica Martín-Gómez**, Yohan Ruprich-Robert, Etienne Tourigny, Raffaele Bernardello, Markus Donat, Pablo Ortega and Valentina Sicardi

CLIVAR, Feb 2023

## Introduction



Atmospheric growth rate (Peters et al., 2017)

- Atmospheric growth rate CO<sub>2</sub>
  - Positive trend
  - Large inter-annual variability
    - Natural processes in the Earth System (main reason)
    - Changes in the anthropogenic CO<sub>2</sub> emissions (small)
- Mismatch between reconstruction and observations

   → Related to natural processes that changes CO<sub>2</sub> in atm
   → std(observations reconstruction) → uncertainty interval.
- Ability to verify global CO<sub>2</sub> emissions: number of years required to detect a change in the trend of the atm CO2 concentration

### • Paris Agreement on climate (2015):

Holding the increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial levels.

- Improve ability verifying global CO₂ emissions → reduce the uncertainty interval by improving the understanding of the:
  - Internal variability of the the atm CO<sub>2</sub> concentration
  - Origin of the uncertainties



• Analyse the internal variability of the atmospheric CO<sub>2</sub> concentration understanding:

- $\rightarrow$  the relative role of the CO<sub>2</sub> fluxes over the land and ocean on the atmospheric CO<sub>2</sub> concentration. Which one of these two is the most important triggering natural changes in the atmospheric CO<sub>2</sub> concentration?
- $\rightarrow$  the main drivers for this internal variability
- $\rightarrow$  the origin of the uncertainties of the CO<sub>2</sub> fluxes in CMIP6 models

## Data

- We consider:
  - From observations:
    - Monthly mole fraction of carbon dioxide in the air (Meinshausen et al., 2016)
    - Monthly air-sea CO<sub>2</sub> flux data from the Global Carbon Budget 2021 Data Products (Friedlingstein et al., 2021)
  - From models:
    - piControl simulations CMIP6-ESMs (20 models)
    - Land-hist LUMIP simulations

Variability of the CO<sub>2</sub> fluxes in observations and piControl simulations



Data from observations have the externally forced signal removed

Variability of the CO<sub>2</sub> fluxes in observations and piControl simulations



Data from observations have the externally forced signal removed

Variability of the CO<sub>2</sub> fluxes in observations and piControl simulations



1) Which are the main land areas contributing the most to this natural changes in the atm CO<sub>2</sub>?

2) Is there any driver for this inter-annual variability?

3) where the uncertainties are coming from?

Land areas contributing the most to the global land CO<sub>2</sub> fluxes and main oceanic drivers

120°E

120°E

0.7

0.6

0.5

kş/s/kg/ş

- 0.2

- 0.1

0.0

80°N

20°N

20°S

40°S



### Influence of ENSO in the land CO<sub>2</sub> fluxes





### Influence of ENSO in the land CO<sub>2</sub> fluxes







### Influence of ENSO in the land CO<sub>2</sub> fluxes



0.075

• 0.000 🖇

-0.075

-0.150

-0.225

-0.300



- Different ENSO amplitudes in models
- Different ENSO teleconnections in models

120°S

40°S

Different Land vegetation models

20°F

40°N

20°N

0

20°S

40°S

180

60°W

120°W

### **Different Land Vegetation models**

• Possible origins of the uncertainties

- Different ENSO amplitudes in models
- · Different ENSO teleconnections in models
- Different Land vegetation models



## Conclusions

- The main source of internal variability of the atm CO<sub>2</sub> concentration are the air-land CO<sub>2</sub> fluxes
   In both, models and observations
- For all models ENSO is the main driver of interannual variability of these land CO<sub>2</sub> fluxes
  - La Niña events remove CO<sub>2</sub> from the atmosphere
- There is a large spread in std(CO<sub>2</sub>) in models, which is synonymous of uncertainty
- Main source of the large spread in std(CO<sub>2</sub>)are the land vegetation models
- We need to improve land vegetation models in order to:
  - Reduce the uncertainty interval (spread among models)
  - Have robust estimation of the natural changes in the atmospheric CO<sub>2</sub> growth rate
  - Be able to attribute the changes in the atmospheric growth rate to mitigation measures or natural processes

# Thank you!

veronica.martin@bsc.es





Barcelona Supercomputing Center Centro Nacional de Supercomputación

ReSPonSe Junior leader la Caixa fellowship LCF/BQ/PR21/11840016

## Annex



**Barcelona Supercomputing Center** Centro Nacional de Supercomputación

#### Variability of the CO2 fluxes in observations, historical and piControl simulations



### **Different ENSO amplitudes in models**

• Possible origins of the uncertainties

- Different ENSO amplitudes in models
- Different ENSO teleconnections in models
- Different Land vegetation models





### **Different ENSO teleconnections in**

models

Possible origins of the uncertainties

- Different ENSO amplitudes in models
- Different ENSO teleconnections in models
- Different Land vegetation models





### **Different ENSO teleconnections in**

models

#### • Possible origins of the uncertainties

- · Different ENSO amplitudes in models
- · Different ENSO teleconnections in models
- Different Land vegetation models

