Learning to simulate precipitation with supervised and generative
learning models

Carlos Alberto Gomez Gonzalez (1), Markus Donat (1), Kim Serradell Maronda (1)

Barcelona
Supercomputing

Center | 5 (1) Barcelona Supercomputing Center, Spain
Centro Nacional de Supercomputacion Corresponding author: carlos.gomez@bsc.es

Introduction

e Artificial neural networks have shown great potential for creating data-driven parameterizations of subgrid processes in climate models
[11[2][3][4][3].

e \We investigate data-driven models based on supervised encoder-decoder networks [6] and conditional Generative Adversarial Networks (CGANS)
[7][8] for the task of simulating precipitation, a meteorological variable heavily affected by parameterizations in weather and climate models.

e \We formulate this problem as an image-to-image translation task, where we aim to learn a transfer function from ERA-5 reanalysis variables to a
gridded observational precipitation dataset, the Multi-Source Weighted-Ensemble Precipitation (MSWEP) [9].

Data preparation Methods

e Meteorological variables were obtained from e |earning the mapping from ERA-5 fields to the MSWEP can be
1979 to 2018 at 3-hourly temporal resolution, @ tackled with feedforward convolutional neural networks in either
resulting in ~117 thousand training samples. | a supervised or a conditional generative adversarial fashion.
MSWEP data, the predictant, was interpolated - e |n the supervised learning context, samples are fed to a network
to 1.4° resolution (see Fig. 1). g 3 which learns the underlying relationship between ERA-5
Several ERA-5 variables, at different pressure | 0 predictors to produce precipitation grids, by minimizing a mean

levels (200, 500, 850 and 1000 hPa), were absolute error (MAE) loss function.

extracted from the WeatherBench dataset [10] g " e |[n the context of conditional generative adversarial training, a
at 1.4° resolution as predictors. The different i %+~ 7 generator network (G) creates new gridded fields from a noise
variables (and pressure levels), for a single Fig_1:MSWEPexam;}egr{dshow,ngthe vector, and a discriminator network (D) judges whether these
time step, are shown on Fig. 2. geographical domain used in this study. generated grids look like the ground truth MSWEP. Both
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Fig. 2: ERA-5 variables corresponding to the precipitation grid shown in Figure 1. Fourteen slices are concatenated in each sample. Fig. 3: Schematic representation of the conditional generative adversarial training.

e Two  supervised encoder-decoder In most cases, the predicted precipitation fields resemble the

networks were implemented: the U-NET morphological features present in the ground truth MSWEP
[6] and the V-NET [11]. samples (see Fig. 4).

e The encoder path of the U-NET e The cGAN based models show promise but do not surpass
features 2D convolutions followed by the cheaper supervised networks (see Tab. 1). This might
max-pooling. The decoder path change with more careful training (hyperparameter tuning).

combines the feature and spatial e The main difference between the supervised and generative
information through up-convolutions .. models lies in the stochastic nature of the predictions as
and concatenations with high-resolution lii’ t: shown in Fig. 6.
features from the encoder. "

e The V-NET Iis aimed at modelling o
volumetric data (with 3D convolutions). B

e Two cGAN models were implemented, I: l
featuring the U'NET or the V'NET asS Fig. 6: Leftmost panel shows an MSWEP test sample and the remaining three panels are realizations of the
gen eratOr N etWOrkS. cGAN generator (trained once).

e The models were compared in terms of o ij‘,(jé‘;ﬁg,ffgz"s”aﬁfgfj ol oreditions: ot el e These results will be followed by a statistical assessment of
the MSE and correlation (see Tab. 1). for INET ?\)/'f’ﬁ,?%t for V-NET, bottom-left for cGAN (U-NET) the precipitation fields generated by the cGAN models and

Spearman correlation map (¢ = 0.564835) Spearman correlation map (4 = 0.616451

their stochastic nature, and a comparison with fully

.
g g s f ] ]
= o o oo.  mean Spearman unsuperwsed GANs (without palre_d samples) and other
correlation generative models, such as normalizing flows.
U-NET 0.0036 0.56
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