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Discussion and conclusions

● Meteorological variables were obtained from 
1979 to 2018 at 3-hourly temporal resolution,  
resulting in ~117 thousand training samples.

● MSWEP data, the predictant, was interpolated 
to 1.4º resolution (see Fig. 1). 

● Several ERA-5 variables, at different pressure 
levels (200, 500, 850 and 1000 hPa), were 
extracted from the WeatherBench dataset [10] 
at 1.4º resolution as predictors. The different 
variables (and pressure levels), for a single 
time step, are shown on Fig. 2.

Data preparation

● Artificial neural networks have shown great potential for creating data-driven parameterizations of subgrid processes in climate models 
[1][2][3][4][5].

● We investigate data-driven models based on supervised encoder-decoder networks [6] and conditional Generative Adversarial Networks (cGANs) 
[7][8] for the task of simulating precipitation, a meteorological variable heavily affected by parameterizations in weather and climate models.

● We formulate this problem as an image-to-image translation task, where we aim to learn a transfer function from ERA-5 reanalysis variables to a 
gridded observational precipitation dataset, the Multi-Source Weighted-Ensemble Precipitation (MSWEP) [9]. 
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● Two supervised encoder-decoder 
networks were implemented: the U-NET 
[6] and the V-NET [11]. 

● The encoder path of the U-NET 
features 2D convolutions followed by 
max-pooling. The decoder path 
combines the feature and spatial 
information through up-convolutions 
and concatenations with high-resolution 
features from the encoder. 

● The V-NET is aimed at modelling 
volumetric data (with 3D convolutions).

● Two cGAN models were implemented, 
featuring the U-NET or the V-NET as 
generator networks. 

● The models were compared in terms of 
the MSE and correlation (see Tab. 1).

● In most cases, the predicted precipitation fields resemble the 
morphological features present in the ground truth MSWEP 
samples (see Fig. 4).

● The cGAN based models show promise but do not surpass 
the cheaper supervised networks (see Tab. 1). This might 
change with more careful training (hyperparameter tuning).

● The main difference between the supervised and generative 
models lies in the stochastic nature of the predictions as 
shown in Fig. 6.

● These results will be followed by a statistical assessment of 
the precipitation fields generated by the cGAN models and 
their stochastic nature, and a comparison with fully 
unsupervised GANs (without paired samples) and other 
generative models, such as normalizing flows. 

● Learning the mapping from ERA-5 fields to the MSWEP can be 
tackled with feedforward convolutional neural networks in either 
a supervised or a conditional generative adversarial fashion. 

● In the supervised learning context, samples are fed to a network 
which learns the underlying relationship between ERA-5 
predictors to produce precipitation grids, by minimizing a mean 
absolute error (MAE) loss function.

● In the context of conditional generative adversarial training, a 
generator network (G) creates new gridded fields from a noise 
vector, and a discriminator network (D) judges whether these 
generated grids look like the ground truth MSWEP. Both 
networks are trained together with a minimax loss function.

Methods

Fig. 1: MSWEP example grid showing the 
geographical domain used in this study.

Fig. 2: ERA-5 variables corresponding to the precipitation grid shown in Figure 1. Fourteen slices are concatenated in each sample.

 mean MSE mean Spearman  
correlation

U-NET 0.0036 0.56

V-NET 0.0037 0.62

cGAN 
(U-NET)

0.0068 0.44

cGAN 
(V-NET)

0.0051 0.54

Fig. 3: Schematic representation of the conditional generative adversarial training.
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Tab. 1: Comparison of supervised and cGAN models in terms 
of the MSE and Spearman correlation metrics. The metrics are 
averaged spatially.

Fig. 5: Spearman correlation map (correlation computed per grid point). 
Top-left panel for U-NET, top-right for V-NET, bottom-left for cGAN (U-NET) 
and bottom-right for cGAN (V-NET).

Fig. 4: Visual comparison of the predicted fields. Topmost panel 
shows an MSWEP test sample. Model predictions: Top-left panel 
for U-NET, top-right for V-NET, bottom-left for cGAN (U-NET) 
and cGAN (V-NET).

Fig. 6: Leftmost panel shows an MSWEP test sample and the remaining three panels are realizations of the 
cGAN generator (trained once).


