

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Accelerating Chemistry Modules in Atmospheric Models using GPUs

Christian Guzman Ruiz, Mario C. Acosta, Matthew Dawson*, Oriol Jorba, Carlos Pérez García-Pando, Kim Serradell

Earth Sciences Department *Currently at National Center for Atmospheric Research (NCAR)

24/03/2020

NVIDIA GTC 2020

Outline

Introduction:

- BSC and the Computational Earth Science group
- Motivation
- Tools: MONARCH & CAMP
- Implementations:
 - GPU
 - Multi-cells & GPU
- Conclusions and future work

> Preliminary work on exploiting GPU capacity <</p>

Motivation

Barcelona Supercomputing Center Centro Nacional de Supercomputación

BSC Departments

To influence the way machines are built, programmed and used: programming models, performance tools, Big Data, Artificial Intelligence, computer architecture, energy efficiency

To understand living organisms by means of theoretical and computational methods (molecular modeling, genomics, proteomics)

To develop and implement global and regional state-of-the-art models for shortterm air quality forecast and long-term climate applications

To develop scientific and engineering software to efficiently exploit super-computing capabilities (biomedical, geophysics, atmospheric, energy, social and economic simulations)

Earth Sciences

Computational Earth Science

Performance Team

- Provide HPC Services (profiling, code audit, ...) to find main bottlenecks of our operational models
- Research and apply new computational methods for current and new platforms

Models and Workflows Team

- Development of HPC user-friendly software framework
- Support the development of atmospheric research software

Data and Diagnostics Team

- Big Data in Earth Sciences
- Provision of data services
- Visualization

Performance Team

- Knowledge of the mathematical and computational aspects of Earth System Applications
- Knowledge of the specific HPC needs of Earth Systems Applications
- Research of HPC methods specifically designed for Earth Systems Applications

Atmospheric models

Atmospheric models are a **mathematical representation** of atmospheric water, gas, and aerosol cycles.

Chemical mechanism

Reaction Number	Reaction	Rate Cons	Reaction						
	Inoroanic Chemistry		Number	Reaction	Rate Const	$tant, k^{\dagger}$	Note		
(1)	$NO_2 + h\nu \xrightarrow{O_2} NO + O(^3P)$	J_{NO_2}		Carbonyl Chemistry					
(2)	$NO_8 + h\nu \longrightarrow 0.89NO_2 + 0.89O(^3P) + 0.11NO$	JNOn	(50)	$HCHO + h\nu \xrightarrow{O_2} 2\PiO_2 + CO$	JHCHOR		13,18		
(3)	$HNO_2 + h\nu \longrightarrow OH + NO_2$ $HNO_2 + h\nu \longrightarrow OH + NO_2$	J _{HNO2}	(51)	$HCHO + h\nu \longrightarrow CO$	JIICHOL		13,18		
(5)	$HNO_4 + h\nu \longrightarrow HO_2 + NO_2$	J _{HNO4}	(52)	$HCHO + OH \xrightarrow{O_2} HO_2 + CO$	1.0×10^{-11}				
(6)	$O_3 + h\nu \longrightarrow O({}^3P)$	JOSA	(53)	$HCHO + NO_3 \xrightarrow{O_2} HNO_3 + HO_2 + CO$	$3.4 \times 10^{-13} \exp(-$	Reaction	D	Rate Constant ht	Note
(7)	$O_3 + h\nu \longrightarrow O(*D)$ $H_2O_2 + h\nu \longrightarrow 2OH$	JOSB	(54)	$ALD2 + h\nu \xrightarrow{2O_2} CH_3O_2 + HO_2 + CO$	JALD2	Number	Reaction	Rate Constant, k	Note
(9)	$O(^{1}D) + O_{2} \longrightarrow O(^{3}P) + O_{2}$	$3.2 \times 10^{-11} \exp(70$	(55)	$ALD2 + OH \longrightarrow C_2O_3$	$5.6 \times 10^{-12} \exp(2$		Organic, Hydroperoxides		
(10)	$O(^{1}D) + N_{2} \longrightarrow O(^{3}P) + N_{2}$	$1.8 \times 10^{-11} \exp(11$	(56)	$ALD2 + NO_3 \xrightarrow{O_2} C_2O_3 + HNO_3$	$1.4 \times 10^{-12} \exp(-$	(86)	$CH_3OOH + h\nu \xrightarrow{O_2} HCHO + HO_2 + OH$	J _{CH=OOH}	11.18
(11)	$O(^{+}D) + H_{2}O \longrightarrow 2OH$	2.2×10^{-10}	(57)	$AONE + h\nu \xrightarrow{2O_3} C_2O_3 + CH_3O_2$	JAONE	(87)	$ETHOOH + h\nu \longrightarrow ALD2 + HO_2 + OH$	same as reaction (86)	9,11
(12)	$O(^{\circ}P) + O_2 \longrightarrow O_3$ $O(^{3}P) + O_2 \longrightarrow O_3 + O_2$	F(6.0(-34), 2.3, 0.0) 8.0 × 10 ⁻¹² err (-	(58)	$AONE + OH \rightarrow ANO2$	$T^{2}5.3 \times 10^{-18} \text{ exp}$	(88)	$ROOH + h\nu \longrightarrow OH + 0.4XO_2 + 0.74AONE + 0.3ALD2$	same as reaction (86)	9,11
(13)	$O(^{3}P) + NO_{2} \rightarrow NO$	6.5 × 10 12 exp (-	(60)	$MGLY + h\nu \longrightarrow C_2O_3 + CO + HO_2$ $MGLY + OH \longrightarrow YO_2 + C_2O_2$	9.64 × JHCHOs 1.7 × 10 ⁻¹¹	(89)	$+ 0.1ETHP + 0.9HO_2 - 1.98PAR$ CH ₂ OOH + OH $\rightarrow 0.7CH_2O_2 + 0.3HCHO + 0.3OH$	$3.8 \times 10^{-12} \text{ mm} (200/77)$	
(15)	$O(^{3}P) + NO_{2} \xrightarrow{M} NO_{3}$	F(9.0(-32), 2.0, 2.2	(61)	$MGLY + NO_2 \longrightarrow HNO_2 + C_2O_2 + CO$	$1.4 \times 10^{-12} \exp(-$	(90)	ETHOOH + OH $\rightarrow 0.7$ ETHP + 0.3ALD2 + 0.3OH	$3.8 \times 10^{-12} \exp{(200/T)}$	0.11
(16)	$O({}^{3}P) \mid NO \xrightarrow{M} NO_{2}$	F(9.0(-32), 1.5, 3.0	. (01)		in a cap ((91)	$ROOH + OH \longrightarrow 0.77 RO_2 + 0.19 MGLY + 0.04 ALD2$	$3.8 \times 10^{-12} \exp(200/T)$	9.11
(17)	$O_3 + NO \longrightarrow NO_2$	$2.0 \times 10^{-12} \exp(-$	(cn)	ETU $\downarrow O_{-} \rightarrow UCUO \downarrow 0.22UO_{-} \pm 0.12OU \pm 0.24CO$	$1.2 \times 10^{-14} \text{ even} (-$		+ 0.23OH - 0.12PAR	1 (
(18)	$O_3 + NO_2 \longrightarrow NO_3$	$1.2 \times 10^{-13} \exp(-1.6 \times 10^{-12} \times 10^{-12} \exp(-1.6 \times 10^{-12} \exp($	(02)	$+ 0.24CO_2 + 0.52HCOOH$	1.2 × 10 exp (-	(0.0)	Organic Nitrates	1	
(20)	$O_3 + O_1 \longrightarrow HO_2$ $O_2 + HO_2 \longrightarrow OH$	$1.0 \times 10^{-14} \exp(-1.1 \times 10^{$	(63)	$ETH + OH \longrightarrow XO_2 + 1.56HCHO + HO_2 + 0.22ALD2$	F(1.0(-28), 0.8, 8.1)	(92)	$ONIT + OH \longrightarrow NAP$ $ONIT + by \longrightarrow NO_2 + 0.41 XO_2 + 0.74 AONE + 0.3 ALD2$	$1.6 \times 10^{-44} \exp(-540/T)$	11.12
(21)	$OH + H_2 \longrightarrow HO_2 + H_2O$	5.5 × 10 ⁻¹² exp (-	(64)	$OLET + O_3 \longrightarrow 0.57HCHO + 0.47ALD2 + 0.33OH$	$4.2 \times 10^{-15} \exp(-$	(55)	+ 0.1ETHP $+ 0.9$ HO ₂ $- 1.9$ 8PAR	JONH	11,10
(22)	$OH + NO \xrightarrow{M} HNO_2$	F(7.0(-31), 2.6, 3.6		$+ 0.26HO_2 + 0.08H_2 + 0.07CH_3O_2 + 0.06ETHP$ + 0.02PO_2 + 0.12C_O_2 + 0.04MGLX + 0.02CH_OH		(94)	$C_2O_3 + NO_2 \longrightarrow PAN$	F(9.7(-29), 5.6, 9.3(-12), 1.5)	1,13
(23)	$OH + NO_2 \xrightarrow{M} HNO_3$	F(2.5(-30), 4.4, 1.6		$+ 0.03RO_2 + 0.13C_2O_3 + 0.04RGD1 + 0.03CR_3OR$ + 0.06CH ₄ + 0.01C ₂ H ₅ + 0.31CO + 0.22CO ₂		(95)	$PAN \longrightarrow C_2O_3 + NO_2$	$k_{94}1.1 \times 10^{28} \exp(-14000/T)$	1,13
(24)	$OH + NO_0 \longrightarrow HO_2 + NO_2$	2.2×10^{-11}		+ 0.22HCOOH $+ 0.09$ RCOOH $- 1.06$ PAR			Alkyl and Acyl Peroxy Radical Che	mistry	
(25)	$OH + HNO_2 \longrightarrow NO_2$	$1.8 \times 10^{-11} \exp(-1.8 \times 10^{-11})$	(65)	$OLEI + O_3 \longrightarrow 1.03ALD2 + 0.07AONE + 0.60OII$	$8.9 \times 10^{-16} \exp(-$	(96)	$CH_3O_2 + NO \longrightarrow HCHO + HO_2 + NO_2$	$3.0 \times 10^{-10} \exp{(280/T)}$	1,11
(26)	$OH + HNO_3 \longrightarrow NO_3$	$\kappa_{\alpha} + [M]\kappa_b/(1 + [M]\kappa_b)$ $k_{-} = 7.2 \times 10^{-15} \mu$		$+ 0.22HO_2 + 0.10CH_3O_2 + 0.05ETHP + 0.09RO_2$		(97)	$ETHP + NO \longrightarrow ALD2 + HO_2 + NO_2$	$2.6 \times 10^{-12} \exp(365/T)$	1,11
		$k_b = 1.9 \times 10^{-33}$ c		± 0.04 CH ₂ OH ± 0.08 CH ₄ ± 0.01 C ₂ H ₆		(98)	$RO_2 + NO \rightarrow 0.16ONIT + 0.84NO_2 + 0.34XO_2$	4.0×10^{-12}	8,11
		$k_{\rm c} = 4.1 \times 10^{-16} \text{ e}$		+ 0.30CO + 0.18CO ₂ + 0.16RCOOH - 2.26PAR			- 1.68PAR		
(27)	$OH + HNO_4 \longrightarrow NO_2$	$1.3 \times 10^{-12} \exp (38)$	(66)	$OLET + OH \longrightarrow XO_2 + HO_2 + HCHO + ALD2 - PAR$	$5.8 \times 10^{-12} \exp(4$	(00)	$C_{\rm e}O_{\rm e} \pm NO_{\rm e} \frac{O_{\rm e}}{O_{\rm e}} CH_{\rm e}O_{\rm e} \pm NO_{\rm e} \pm OO_{\rm e}$	$5.2 \times 10^{-12} \text{ orr} (260/T)$	1.10
(28)	$OH + HO_2 \longrightarrow HO_2$ $OH + H_2O_2 \longrightarrow HO_2$	$2.9 \times 10^{-12} \exp(-$	(67)	$OLEI + OH \longrightarrow XO_2 + IIO_2 + 0.23AONE + 1.77ALD2$	$2.9 \times 10^{-11} \exp(2$	(100)	$ANO2 + NO \longrightarrow NO_2 + C_2O_1 + HCHO$	4.0×10^{-12}	8.11
(30)	$HO_2 + HO_2 \xrightarrow{M} H_2O_2$	$(k_d + [M]k_e)$	(PH)	- 2.23PAR	2 1 v 10 ⁻¹² avrs ((101)	$NAP + NO \longrightarrow 1.5NO_2 + 0.5IICHO + 0.5ALD2$	4.0×10^{-12}	8,11
		$k_d = 2.3 \times 10^{-13} \text{ e}$	(60)	$OLEI + NO_8 \longrightarrow NAP$	2.5×10^{-12}		$+ 0.5 \text{ONIT} + 0.5 \text{HO}_2 - \text{PAR}$		100.000
	м	$k_* = 1.7 \times 10^{-33}$ e:	(00)	Aromatic Chemistry		(102)	$1SOPP + NO \rightarrow 0.09ONIT + 0.91NO_2 + 0.91HO_2$	4.0×10^{-12}	8,15
(31)	$HO_2 + HO_2 + H_2O \xrightarrow{\sim} H_2O_2$	$k_{30} \times 1.4 \times 10^{-31}$ (10)	(70)	TOL + OH $\rightarrow 0.08XO_2 + 0.2HO_2 + 0.12CRES$	2.1 × 10 ⁻¹² exp (3	(103)	+ 0.03 HCHO + 0.9113 OFRD + 0.187 AR ISOPN + NO $\rightarrow NO_0 + 0.84 \text{LD}^2 + 0.80 \text{NIT} + 0.8 \text{HO}_0$	4.0×10^{-12}	8 15
(32)	$HO_2 + NO \longrightarrow OR + NO_2$	E(19(-21) 2.2 4.7	1	+ 0.8TO ₂	1 7 10-11 (1	(100)	+ 0.2ISOPRD + 0.2NO ₂ + 1.6PAR	10 1 10	0,10
(33)	$HO_2 + NO_2 \longrightarrow HNO_4$ $HO_3 + NO_3 \longrightarrow HNO_3$	5.0×10^{-16}	(71)	$XYL + OH \longrightarrow 0.5XO_2 + 0.55HO_2 + 0.8MGLY$ + 1 1PAP + 0.45TO ₂ + 0.05CRES	$1.7 \times 10^{-11} \exp(1$	(104)	$ISOPO_2 + NO \longrightarrow NO_2 + HO_2 + 0.59CO + 0.55ALD2$	4.0×10^{-12}	8,15
(35)	$HNO_4 \xrightarrow{M} HO_8 + NO_8$	$k_{33} \times 4.76 \times 10^{26} \epsilon$	(72)	$TO_2 + NO \rightarrow 0.95(NO_2 + OPEN + HO_2) + 0.05ONIT$	8.1×10^{-12}	(****)	+ 0.25HCHO + 0.34MGLY + 0.63AONE	10 10-12	
(36)	$NO_3 + NO \longrightarrow 2NO_2$	$1.5 \times 10^{-11} \exp(17)$	(73)	$CRES + OH \longrightarrow 0.4CRO + 0.6XO_2 + 0.6HO_2$	4.1×10^{-11}	(105)	$XO_2 + NO \longrightarrow NO_2$ $CH O_1 + NO_2 \longrightarrow WCHO_2 + HO_1 + NO_2$	4.0×10^{-10}	8,13
(37)	$NO_3 + NO_2 \longrightarrow NO + NO_2$	$4.5 \times 10^{-14} \exp(-$	1-11	+ 0.30PEN	2000 CONTRACTOR	(107)	$ETHP + NO_2 \rightarrow ALD2 + HO_2 + NO_2$	2.5×10^{-12}	7,11
(38)	$NO_3 + NO_2 \longrightarrow N_2O_5$ $NO_2 + NO_2 \longrightarrow 2NO_2 + O_2$	F(2.2(-30), 3.9, 1.5) 8.5 × 10 ⁻¹³ err (-	(74)	$CRES + NO_3 \longrightarrow CRO + HNO_3$ $CRO + NO_2 \longrightarrow ONIT$	2.2×10^{-11}	(108)	$RO_2 + NO_3 \longrightarrow NO_2 + 0.4XO_2 + 0.74AONE + 0.3ALD2$	2.5×10^{-12}	7,11
(40)	$NO_3 + NO_3 \longrightarrow 2IO_2 + O_2$ $NO_3 + HO_3 \longrightarrow 3HNO_3 + .7NO_2 + .7OH$	3.5×10^{-12}	(76)	$OPEN + OH \longrightarrow XO_2 + C_2O_2 + 2CO + 2HO_2 + HCHO$	1.4×10^{-11}	100000000	+ 0.1ETHP + 0.9HO ₂ - 1.98PAR	2457 459 (1986) <u>2982</u>	
(41)	$N_2O_5 + H_2O \longrightarrow 2HNO_3$	2.0×10^{-21}	(77)	$OPEN + h\nu \longrightarrow C_2O_3 + CO + HO_2$	$9.04 \times J_{HCHOs}$	(109)	$C_2O_3 + NO_3 \longrightarrow CH_3O_2 + NO_2$	4.0×10^{-12}	8,11
(42)	$N_2O_5 \xrightarrow{M} NO_3 + NO_2$	$k_{38} \times 3.7 \times 10^{26}$ es	(78)	$OPEN + O_3 \longrightarrow 0.03ALD2 + 0.62C_2O_3 + 0.7HCHO$	$5.4 \times 10^{-17} \exp(-$	(110)	$ANO2 + NO_3 \longrightarrow NO_2 + C_2O_3 + HCHO$	1.2×10^{-12}	8,11
(43)	$NO + NO + O_2 \xrightarrow{O_2} 2NO_2$	$3.3 \times 10^{-39} \exp{(53)}$		$+ 0.69CO + 0.08OH + 0.03XO_2 + 0.76HO_2 + 0.2MGLY$		(111)	$+ 0.5 \text{ONIT} + 0.5 \text{HO}_2 - 9 \text{AR}$	4.0 × 10	0,11
(44)	$CO + OH \xrightarrow{O_2} HO_2$	$1.5 \times 10^{-13}(1 + .6)$		Isoprene Chemistry		(112)	$XO_2 + NO_3 \longrightarrow NO_2$	2.5×10^{-12}	7,11
(45)	$SO_2 + OH \longrightarrow H_2SO_4 + HO_2$	F (3.0(-31), 3.3, 1.3	(79)	$ISOP + OH \longrightarrow ISOPP + 0.08XO2$	$2.55 \times 10^{-11} \exp(4$	(113)	$CH_3O_2 + HO_2 \longrightarrow CH_3OOH$	$3.8 \times 10^{-13} \exp(800/T)$	1,11
		SUI	FUR (HEM	/		OH	$7.5 \times 10^{-13} \exp(700/T)$	1,11
-	0°	001	FATE		($1.7 \times 10^{-13} \exp(1300/T)$	8,11
	O WATER	501	FAIE)		S J CH + O ₅	$4.5 \times 10^{-10} \exp(1000/T)$ 1.7 × 10 ⁻¹⁰ err (1300/T)	5,10
***		NU	CLEAT	ION AND (DU SS BC	$\left(\right)$		-3	$1.7 \times 10^{-13} \exp(1300/T)$	8,11
	(SS, BC, UPTARE	H2SO4 CO	NDENS	SATION OL OC SOA				$1.7 \times 10^{-13} \exp(1300/T)$	8,15
	OC, SO4)			00, 304)	: 03]		O • O3 + 2PAR	$1.7 \times 10^{-13} \exp{(1300/T)}$	8,15
	H2O	Server 0	0	00 00			O O'verset H	$1.7 \times 10^{-13} \exp(1300/T)$	8,15
C	0	0		0 00	0			$1.7 \times 10^{-12} \exp(1300/T)$	8,11
	00	U C		Ý Č	5 5		S Parameterized Rermutation Reac	tions	
	~ • • •			Ĭ	($0.32HO_2 + 0.34CH_3OH$	$k_{i,i}^{i,i}$, $i = CH_3O_2$	11,16
	A OFA CALT	DIMETHY	SULE	DE 🛉 ,	/	1.22	$HO_2 + 0.2C_2H_6$	$k_{ij}^{ij}, i = \text{ETHP}$	11,16
	SEA-SALI	1 EMISSIONS		'	2	'GAS	+hv, LD2 + 0.57AONE + 0.06ETHP	$k_i^{\gamma}, i = \mathrm{RO}_2$	11,16
	EMISSIONS	ENISSIONS	,	1	-	1000		$k^{(1)} := C C$	11,16
				T		(197)	$4NO2 \rightarrow 0.7(C_{-}O_{-} + HCHO) + 0.15(MCLV + AONE)$	$k_{i}^{(1)}, i = 0.003$	11,16
						(127)	$NAP \rightarrow 0.5(NO_{2} + HCHO + ALD2 + ONIT) PAP$	$k^{(1)} i = NAP$	11.16
						(120)	in - i solidi + nono + nase + oni) - fAR	····	11,10
				Barcelona					

Center

Centro Nacional de Supercomputación

Computational design

- Programming languages:
 - FORTRAN, C
- Parallelization strategy:
 - Domain decomposition
 - MPI, MPI+OpenMP
 - New approaches: MPI +
 OpenACC | CUDA

Parallelization techniques

359.mm/bho3t: CPU: Intel Xeon ES-2595 v3, 2 sockets, 32-cores total, GPU: Tesia K80 bitts NEMO: Esch socket CPU: Intel Xeon ES-2598 v3, 16 cores; GPU: NVIDA K80 bitts GPUs CLOVERLEAF: CPU: Dual socket Intel Xeon CPU ES-2590 v2, 20 cores total, GPU: Tesia K80 bitts GPUs

Performance Portability from GPUs to CPUs with OpenACC, Nvidia Developer Blog

Chemistry in the GPU: CUDA

	Configuration		Median CP exec tim	U Median le lerated s) tir	acce- l exec ne (s)	Perform	over CPU	
	Intel Xeon X5650 + M2 Intel Xeon E5-2680 v3 IBM POWER8 + P100	2070 + K80	4.50 1.47 3.04	2 6 0	0.999 0.283 0.149	4 5 20	4.50× 5.21× 0.40×	
Configuration		MPI Processes		CPU exec time (s)	Accelerated exec time (s)		Performance over CPU	
2 × 6-co	ore Intel Xeon X5650 +	2 MPI	processes	5199		2358	2.27 ×	
2 × NV	IDIA M2070	12 MP	I processes	1388		1368	1.01 ×	
2 × 12-0	core Intel E5-2680 v3 +	4 MPI	processes	7362		3384	2.17 ×	
2 × NV	IDIA K80	24 MP	I processes	1756		1473	1.19 ×	
$2 \times 10-0$	core IBM POWER <mark>8</mark> +	4 MPI	processes	2294		918	2.50 ×	
$4 \times NV$	IDIA P100	20 MP	I Processes	814		437	1.86 ×	

Michail Alvanos and Theodoros Christoudia, GPU-accelerated atmospheric chemical kinetics in the ECHAM/MESSy (EMAC) Earth system model , 2017

Kyle E. Niemeyera,b,1, Chih-Jen Sungb, Accelerating moderately stiff chemical kinetics in reactive-flow simulations using GPUs, 2018

...and more

• Challenges Addressed

- Siloed treatment of physical/chemical processes
- Huge heterogeneous codebase
- Efficient solving of complex physical/chemical systems
- How we do it
 - Integrated stand-alone chemistry solver
 - Standardized description of physical/chemical processes
 - Porting high-cost functions to GPUs
 - Simultaneous solving of multiple grid-cells

Tools: MONARCH & CAMP

Barcelona Supercomputing Center Centro Nacional de Supercomputación

BSC | Motivation | Tools | GPU | Multi-cells & GPU | Conclusions MONARCH: Multiscale On-line Atmosphere Chemistry Model

~20%

Atmospheric chemistry - Classical approach

BSC | Motivation | Tools | GPU | Multi-cells & GPU | Conclusions CAMP: Chemistry Across Multiple Phases

BSC | Motivation | Tools | GPU | Multi-cells & GPU | Conclusions CAMP: Chemistry Across Multiple Phases

ODE Solver

 Purpose: Iteratively solves y'=f(t,y) using a Backward Differentiation Formula (CVODE) and the SuiteSparse KLU Linear Solver

• Needs: f(y) and $J = \partial f / \partial y$ (Derivative & Jacobian)

ODE Solver

 Purpose: Iteratively solves y'=f(t,y) using a Backward Differentiation Formula (CVODE) and the SuiteSparse KLU Linear Solver

• Needs: f(y) and $J = \partial f / \partial y$ (Derivative & Jacobian) ~30% ~20% ~10%

~70%

ODE Solver

 Purpose: Iteratively solves y'=f(t,y) using a Backward Differentiation Formula (CVODE) and the SuiteSparse KLU Linear Solver

• Needs: f(y) and $J = \partial f / \partial y$ (*Derivative* & Jacobian) ~30% ~20% ~10%

~70%

BSC | Motivation | Tools | GPU | Multi-cells & GPU | Conclusions CAMP: Optimization strategy

• Profiling: Identify the most-time consuming functions

• GPU-based derivative function: Porting to GPUs and performance analysis

Multi-cells & GPU: Improve performance using a multiple grid-cell solving strategy

CAMP: Optimization strategy

Profiling: Identify the most-time consuming functions->
 Derivative (~20%)

GPU-based derivative function: Porting to GPUs and performance analysis

Multi-cells & GPU: Improve performance using a multiple grid-cell solving strategy

GPU-based Derivative Function

Barcelona Supercomputing Center Centro Nacional de Supercomputación

CAMP workflow in MONARCH

Derivative: f(y)

• A reaction:

 $c_1y_1 + c_2y_2 + \cdots + c_my_m \leftrightarrow c_{m+1}y_{m+1} + c_{m+2}y_{m+2} + \cdots + c_ny_n,$

$$\begin{pmatrix} \frac{dy_i}{dt} \end{pmatrix}_j = \begin{cases} -c_i r_j(\mathbf{y}, T, P, \dots) & \text{for } i \leq m \\ c_i r_j(\mathbf{y}, T, P, \dots) & \text{for } m < i \leq m \end{cases}$$

Derivative:

$$f_i \equiv \frac{dy_i}{dt} = \sum_j \left(\frac{dy_i}{dt}\right)_j$$

c = *stoichiometric coefficient*

t = time

r = rate

j = reaction

i = species

y_i = concentration of species i

m = *number of reactants*

n = *number* of *products*

p = number of reactions

w = number of species

Derivative GPU

• Parallelize reactions loop

Add data transfer

• Atomic operations

Test environment

• **Plaftorm:** CTE-POWER cluster, each node with:

- 2 x IBM Power9 8335-GTH @ 2.4GHz
- 4 x GPU NVIDIA V100 (Volta)
- GCC version 6.4.0 and NVCC version 9.1

• **Configuration**: CB05

Mechanism	Reactions	Reactants	Cells	GPUs	MPI processes
CB05 (CPU)	186	72	1	0	1
CB05 (GPU)	186	72	1	1	1

Derivative GPU

Test impact of CAMP GPU scalability speedup **GPU** reaction calculations 2 1.8 1.5 Speedup (CPU/GPU) Scale by repeating CB05 mechanism 0:82 0.5 0.26 We can still 0.12 improve 1000 2000 3000 5000 4000 memory access Number of reactions

Reaction data structure

Derivative GPU: Inverted Data Structure

j = Reaction

p = *Parameter*

Value # = GPU access order and arrangement in memory

Derivative GPU: Inverted Data Structure

CAMP GPU scalability speedup memory access

Number of reactions

CAMP: Optimization strategy

Profiling: Identify the most-time consuming functions->
 Derivative (~20%)

 GPU-based derivative function: Porting to GPUs and performance analysis -> GPU initialization is costly for small amounts of data

Multi-cells & GPU: Improve performance with a multiple grid-cell solving strategy

Multi-Cells & GPU

Barcelona Supercomputing Center Centro Nacional de Supercomputación

CAMP: Multi-cells

System Features:

- Cells are **not interdependent** w.r.t. chemistry
- GPUs need sufficient work to offset initialization
- MPI domain decomposition results in multiple cells per node

- Avoid resetting variables each iteration
- Reduce cache misses
- Reduce ODE iterations

BSC | Motivation | Tools | GPU | Multi-cells & GPU | Conclusions
CAMP: Multi-cells

N cells

CAMP: Multi-cells

BSC | Motivation | Tools | GPU | Multi-cells & GPU | Conclusions
CAMP: Multi-cells

CAMP: Multi-cells

$$f_i \equiv \frac{dy_{ik}}{dt} = \sum_j \left(\frac{dy_{ik}}{dt}\right)_j$$

 f_i = derivative

$$k = cell$$

 y_{ik} = concentration of species i in cell k

- *p* = number of reactions
- q = number of cells

Test environment

- **Plaftorm:** CTE-POWER cluster, each node with:
 - 2 x IBM Power9 8335-GTH @ 2.4GHz
 - 4 x GPU NVIDIA V100 (Volta)
 - GCC version 6.4.0 and NVCC version 9.1

• **Configuration**: Basic

Mechanism	Reactions	Reactants	Cells*	GPUs	MPI processes
Basic (One-cell)	2	3	100 - 10,800	0	1
Basic (Multi-cell)	2	3	100 - 10,800	0	1

*10,800 cells is the common configuration in MONARCH

BSC | Motivation | Tools | GPU | Multi-cells & GPU | Conclusions CPU Multi-cells: Results

• Reduced ODE solver iterations

Number of cells

CPU Multi-cells: Results

Number of cells

GPU Multi-cells

Centro Nacional de Supercomputación

Test environment

- **Plaftorm:** CTE-POWER cluster, each node with:
 - 2 x IBM Power9 8335-GTH @ 2.4GHz
 - 4 x GPU NVIDIA V100 (Volta)
 - GCC version 6.4.0 and NVCC version 9.1
- **Configuration**: Basic GPU

Mechanism	Reactions	Reactants	Cells*	GPUs	MPI processes
Basic (GPU)	2	3	100- 10,800	1	1

*10,800 cells is the common configuration in MONARCH

BSC | Motivation | Tools | GPU | Multi-cells & GPU | Conclusions GPU Multi-cells: Results

CAMP speedup for basic test with multicells CPU and GPU

Number of cells

GPU Multi-cells: Data & Compute

Mechanism	Reactions	Reactants	Cells	GPUs	MPI processes
Basic (GPU)	2	3	10,800	1	1

GPU Multi-cells: Data & Compute

Mechanism	Reactants	Cells	GPUs	Processes
Basic (GPU)	3	131072	1	1
Basic (MPI)	3	131072	0	40

Derivative on GPU and MPI

CAMP: Optimization strategy

Profiling: Identify the most-time consuming functions->
 Derivative (~20%)

 GPU-based derivative function: Porting to GPUs and performance analysis ->GPU initialization is costly for small amounts of data

 Multi-cells & GPU: Improve performance using a multiple grid-cell solving strategy ->GPUs can handle even more load ... For upcoming work!

Conclusions

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Conclusions

GPU-based derivative function improves systems with >2000 reactions

-> GPUs significantly speed up solving large mechanisms

 Optimizing GPU memory access by reconfiguring data structures improves execution up to 30%

-> Ensuring optimal memory access always improves efficiency

- Multi-cell approach makes solving 12–14 times faster
 -> Simultaneously solving cells reduces solver iterations
- Porting solver functions to GPUs coupled with multi-cell treatment improves chemistry solving by 7–21×

-> Maximizing parallelization improves GPU functions

Data movement accounts for most multi-cell GPU computation time for large numbers of grid-cells

-> Search for alternatives (async & more computation)

Future work

 Porting all solver functions to GPUs will reduce data movement and improve efficiency

Load balancing GPU & CPU + asynchronous communication

• Evaluate GPU-based chemistry solving in MONARCH

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Thank you

christian.guzman@bsc.es

Appendix

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Initial CPU-based CAMP

Performance compared against reference methods

GPU Multi-cells: Memory & Compute

GPU-based derivative data movement and computation times

Number of cells

CAMP GPU vs KPP GPU

Barcelona

Center

CAMP GPU (including future work) vs KPP GPU

GPU Multi-cells: Block processing

CAMP time per different threads per block for basic test with 10,800 cells

Threads per block

CAMP time kernel division for basic test with 10,800 cells

Platform

CTE-POWER:

2 login nodes and 52 compute nodes, each of them:

- 2 x IBM Power9 8335-GTH @ 2.4GHz (3.0GHz on turbo, 20 cores and 4 threads/core, total 160 threads per node)
- 512GB of main memory distributed in 16 dimms x 32GB @ 2666MHz
- 2 x SSD 1.9TB as local storage
- 4 x GPU NVIDIA V100 (Volta) with 16GB HBM2.
- GPFS via one fiber link 10 GBit
- Compilers: GCC version 6.4.0 and NVCC version 9.1

Reaction data

