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Outline
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● Introduction: 
○ BSC and the Computational Earth Science group
○ Motivation
○ Tools: MONARCH & CAMP

● Implementations:
○ GPU
○ Multi-cells & GPU

● Conclusions and future work

> Preliminary work on exploiting GPU capacity <  
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BSC Departments
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Earth Sciences 
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Computational Earth Science
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Performance Team
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○ Knowledge of the mathematical and computational 
aspects of Earth System Applications

○ Knowledge of the specific HPC needs of Earth Systems 
Applications

○ Research of HPC methods specifically designed for Earth 
Systems Applications
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Atmospheric models are a mathematical representation 
of atmospheric water, gas, and aerosol cycles.

Atmospheric models
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Chemical mechanism
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Computational design
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● Programming languages: 

○ FORTRAN, C

● Parallelization strategy:

○ Domain decomposition

○ MPI, MPI+OpenMP

○ New approaches: MPI + 

OpenACC | CUDA
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Parallelization techniques
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Performance Portability from GPUs to CPUs with OpenACC, Nvidia Developer Blog
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Chemistry in the GPU: CUDA
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...and more

Michail Alvanos and Theodoros Christoudia, GPU-accelerated 
atmospheric chemical kinetics in the ECHAM/MESSy (EMAC) Earth 
system model , 2017

Kyle E. Niemeyera,b,1, Chih-Jen Sungb,  
Accelerating moderately stiff chemical kinetics in 
reactive-flow simulations using GPUs, 2018
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Our goal

● Challenges Addressed

○ Siloed treatment of physical/chemical processes

○ Huge heterogeneous codebase

○ Efficient solving of complex physical/chemical systems

● How we do it

○ Integrated stand-alone chemistry solver

○ Standardized description of physical/chemical processes

○ Porting high-cost functions to GPUs

○ Simultaneous solving of multiple grid-cells



Tools: 
MONARCH & 

CAMP
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MONARCH: Multiscale On-line Atmosphere 
Chemistry Model

Multiscale Model from Global to 

Local Scales

~20%

~80%
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Host model

Aerosol Representation
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Host model
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ODE Solver
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● Purpose: Iteratively solves y’=f(t,y) using a Backward 
Differentiation Formula (CVODE) and the SuiteSparse 
KLU Linear Solver

● Needs: f(y) and J = ∂f /∂y (Derivative & Jacobian)
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ODE Solver
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● Purpose: Iteratively solves y’=f(t,y) using a Backward 
Differentiation Formula (CVODE) and the SuiteSparse 
KLU Linear Solver

● Needs: f(y) and J = ∂f /∂y (Derivative & Jacobian)

  

~70%

~30%

~10%~20%
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ODE Solver
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CAMP: Optimization strategy
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● Profiling: Identify the most-time consuming functions                     

● GPU-based derivative function: Porting to GPUs and 

performance analysis

● Multi-cells & GPU: Improve performance using a multiple 

grid-cell solving strategy
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CAMP: Optimization strategy

23

● Profiling: Identify the most-time consuming functions-> 

Derivative (~20%)

● GPU-based derivative function: Porting to GPUs and 

performance analysis

● Multi-cells & GPU: Improve performance using a multiple 

grid-cell solving strategy



GPU-based  
Derivative Function
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CAMP workflow in MONARCH
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Derivative: f(y) 
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● A reaction:

● Derivative:

c = stoichiometric coefficient
t = time
r = rate
j = reaction
i = species
y

i 
= concentration of species i

m = number of reactants
n = number of products
p = number of reactions
w = number of species
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Derivative GPU
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● Parallelize reactions loop

● Add data transfer 

● Atomic operations
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Test environment

28

● Plaftorm: CTE-POWER cluster, each node with:
○ 2 x IBM Power9 8335-GTH @ 2.4GHz
○ 4 x GPU NVIDIA V100 (Volta)
○ GCC version 6.4.0 and NVCC version 9.1

● Configuration: CB05

Mechanism Reactions Reactants Cells GPUs MPI 
processes

CB05 (CPU) 186 72 1 0 1

CB05 (GPU) 186 72 1 1 1
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Derivative GPU
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● Test impact of 
GPU reaction 
calculations   

● Scale by 
repeating CB05 
mechanism 

● We can still 
improve 
memory access
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Reaction data structure

3 int 3~100 * [int]

3~30 * [float]

reaction type
int data size
float data size

int reaction 
params

reaction type
int data size
float data size

int reaction 
params

Reaction 1 Reaction 2

float reaction 
params

float 
reaction 
params

Reaction 1 Reaction 2

[int] array

[float] array

3 int 3~100 * [int]

3~30 * [float]
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Derivative GPU: Inverted Data Structure
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j = Reaction
p = Parameter
Value # = GPU access order and arrangement in memory
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Derivative GPU: Inverted Data Structure
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CAMP: Optimization strategy
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● Profiling: Identify the most-time consuming functions-> 

Derivative (~20%)

● GPU-based derivative function: Porting to GPUs and 

performance analysis -> GPU initialization is costly for 

small amounts of data

● Multi-cells & GPU: Improve performance with a multiple 

grid-cell solving strategy



Multi-Cells & GPU
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CAMP: Multi-cells 
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● System Features:
○ Cells are not interdependent w.r.t. chemistry
○ GPUs need sufficient work to offset initialization
○ MPI domain decomposition results in multiple cells per 

node

● Goals:
○ Avoid resetting variables each iteration 
○ Reduce cache misses
○ Reduce ODE iterations
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CAMP: Multi-cells
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CAMP: Multi-cells
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● Species 
“replication”: 
O31, O32.. ON

● Common 
ODE solver 
parameters
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CAMP: Multi-cells

38
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CAMP: Multi-cells
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f
i
 = derivative

t = time
j = reaction
i = species
k = cell
y

ik 
= concentration of species i in cell k

p = number of reactions
q = number of cells
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Test environment
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● Plaftorm: CTE-POWER cluster, each node with:
○ 2 x IBM Power9 8335-GTH @ 2.4GHz
○ 4 x GPU NVIDIA V100 (Volta)
○ GCC version 6.4.0 and NVCC version 9.1

● Configuration: Basic

Mechanism Reactions Reactants Cells* GPUs MPI 
processes

Basic 
(One-cell)

2 3 100 -
10,800

0 1

Basic 
(Multi-cell)

2 3 100 -
10,800

0 1

*10,800 cells is the common configuration in MONARCH
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CPU Multi-cells: Results
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○ Reduced ODE solver iterations
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CPU Multi-cells: Results
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GPU Multi-cells
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Reaction & Cell parallelization

f
i
 = derivative

t = time
r = rate
j = reaction
i = species
k = cell
y

ik 
= concentration of species i in cell k

p = number of reactions
q = number of cells
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Test environment
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● Plaftorm: CTE-POWER cluster, each node with:
○ 2 x IBM Power9 8335-GTH @ 2.4GHz
○ 4 x GPU NVIDIA V100 (Volta)
○ GCC version 6.4.0 and NVCC version 9.1

● Configuration: Basic GPU

Mechanism Reactions Reactants Cells* GPUs MPI 
processes

Basic (GPU) 2 3 100-
10,800

1 1

*10,800 cells is the common configuration in MONARCH
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GPU Multi-cells: Results
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GPU Multi-cells: Data & Compute
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Mechanism Reactions Reactants Cells GPUs MPI 
processes

Basic (GPU) 2 3 10,800 1 1
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GPU Multi-cells: Data & Compute
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Mechanism Reactants Cells GPUs Processes

Basic (GPU) 3 131072 1 1

Basic (MPI) 3 131072 0 40
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CAMP: Optimization strategy
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● Profiling: Identify the most-time consuming functions-> 

Derivative (~20%)

● GPU-based derivative function: Porting to GPUs and 

performance analysis ->GPU initialization is costly for 

small amounts of data

● Multi-cells & GPU: Improve performance using a multiple 

grid-cell solving strategy ->GPUs can handle even more 

load ... For upcoming work!



Conclusions
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Conclusions

50

● GPU-based derivative function improves systems with >2000 
reactions

-> GPUs significantly speed up solving large mechanisms

● Optimizing GPU memory access by reconfiguring data 
structures improves execution up to 30%

-> Ensuring optimal memory access always improves 
efficiency
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Conclusions
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● Multi-cell approach makes solving 12–14 times faster

-> Simultaneously solving cells reduces solver iterations

● Porting solver functions to GPUs coupled with multi-cell 
treatment improves chemistry solving by 7–21×

-> Maximizing parallelization improves GPU functions

● Data movement accounts for most multi-cell GPU 
computation time for large numbers of grid-cells

-> Search for alternatives (async & more computation)
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Future work
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● Porting all solver functions to GPUs will reduce data 
movement and improve efficiency

● Load balancing GPU & CPU + asynchronous communication

● Evaluate GPU-based chemistry solving in MONARCH



Thank you 

christian.guzman@bsc.es
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Initial CPU-based CAMP
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GPU Multi-cells: Memory & Compute
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CAMP GPU vs KPP GPU
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CAMP GPU (including future work) vs KPP 
GPU

58



GPU Multi-cells: Block processing
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Platform
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CTE-POWER:

2 login nodes and 52 compute nodes, each of them:

- 2 x IBM Power9 8335-GTH @ 2.4GHz (3.0GHz on turbo, 20 
cores and 4 threads/core, total 160 threads per node)

- 512GB of main memory distributed in 16 dimms x 32GB @ 
2666MHz

- 2 x SSD 1.9TB as local storage
- 4 x GPU NVIDIA V100 (Volta) with 16GB HBM2.
- GPFS via one fiber link 10 GBit
- Compilers: GCC version 6.4.0 and NVCC version 9.1
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Reaction data

reaction type
int data size
float data size

int reaction 
params

float reaction 
params

3 int 3-100 * [int] 3-30 * [float]

Reaction 1 Reaction 2

reaction type
int data size
float data size

int reaction 
params

float 
reaction 
params

reaction type
int data size
float data size

int reaction 
params

reaction type
int data size
float data size

int reaction 
params

Reaction 1 Reaction 2

float reaction 
params

float 
reaction 
params

Reaction 1 Reaction 2

[int] array

[float] array

3 int 3-100 * [int] 3-30 * [float]


