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Abstract

The increasing concentration of atmospheric CO2 has been largely studied as one of the main
drivers of climate change. In order to simulate the Earth’s future climate, it is crucial to
accurately predict the evolution of carbon dioxide. To this end, sources and sinks of atmospheric
carbon have to be precisely estimated. In this regard, the world’s oceans represent one of the
most important carbon sinks on the planet. Ocean physics is the main driver of carbon uptake
on century-long timescales but, on shorter timescales (up to a decade), ocean biogeochemical
processes like phytoplankton growth play a major role in driving natural fluctuations of ocean
carbon uptake. In this research, reconstructions of surface chlorophyll a concentration (a proxy
of phytoplankton biomass) were assessed against remote sensing observations. With the aim of
finding the best set of initial conditions for near-term predictions of ocean biogeochemistry, four
experiments generated from the ocean component of the EC-Earth earth system model were
analysed. The four experiments differ in the way observations of temperature and salinity are
assimilated. Large-scale and regional analysis evidence that the experiment a1z8 is the most
suitable for predictions of chlorophyll a. This result was confirmed by the validation of simulated
surface nutrient fields (NO3) against climatological observations, pointing to the importance
of including an appropriate region around the equator without any data assimilation. The
experiments in which this region was wider led to the most realistic simulation of both variables.
Driving the simulations towards a reference state in the equatorial region generates spurious
processes that give rise to worse representations.
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Introduction
It is firmly established that one of the main
drivers of climate change is the increasing
concentration of greenhouse gases, primarily
of carbon dioxide (CO2), derived from human
activities. The world’s oceans currently
take over about 25-30% of anthropogenic
CO2 from the atmosphere (Li et al., 2016).
Furthermore, this carbon oceanic uptake
seems to present temporal fluctuations in
certain regions, as studied by Li et al
(2016) for the North Atlantic and its relation
with the NAO1 at interannual and decadal
timescales.

Near-term climate prediction (Fig. 1),
ranging periods between 2 and 30 years,
is an information tool for the climate
adaptation and social progress, currently
under development (Doblas-Reyes et al.,
2013). It is based on two factors:
internally generated variations, embracing
different natural oscillation patterns, and
forced variations, based on changes in the
atmospheric composition, due to natural
or anthropogenic processes. Therefore, an
accurate prediction of atmospheric carbon
dioxide scenarios could lead to a better
understanding of the future climate. As
stated above, carbon uptake by the oceans
plays an important role in this matter.
However, current changes in circulation and
in the physical state of the oceans could alter
this crucial capacity, resulting in an increase
in the concentration of carbon dioxide in the
atmosphere and an acceleration of climate
change, referred to as the carbon feedback.
Reliable predictions of ocean carbon uptake
are, henceforth, of great interest and a source
of predictability for climate predictions.

Phytoplankton takes up CO2 at the
ocean surface, through photosynthesis, and
produces organic matter, part of which
is exported to the deep ocean, in a
process known as the biological pump. It
is responsible for almost 50% of global
photosynthesis, and plays a fundamental role
in regulating the climate (Falkowski, 1996).

Chlorophyll a (Chl-a) is a good indicator
of phytoplankton abundance. Therefore,
its variability and its relation with different
variables and events has been widely studied
through observational data, using either
in situ or remote sensing measurements:
Pérez-Arvizu et al. (2013) analysed the
seasonal variability of chlorophyll a and its
response to El Niño conditions in the Gulf
of California; Winder and Cloern (2010)
examined the annual cycle of phytoplankton
biomass through satellite chlorophyll data
and its role as indicator of climate change.

Modelling studies of this and other
biogeochemical variables have recently
emerged, principally due to its importance
in the future evolution of the climate system:
Lee et al. (2014) looked into the response of
chlorophyll concentration to El Niño events
through an ocean-biogeochemical coupled
model; Séférian et al. (2013) analysed the
multiyear predictability of tropical marine
productivity with an ESM2.

Fig. 1. Explanatory diagram of climate prediction.
It takes into account initial conditions and long-term
forcings. Source: https://www.wcrp-climate.org

In this research, the Chl-a variable
simulated by the ocean component of the
EC-Earth model was assessed through four
different sets of initial conditions, generated
with four reconstructions, each following
a particular procedure of assimilation of
observations for ocean temperature and
salinity (nudging). The main objective of
this project was to evaluate the solution of
the biogeochemical model in response to the
simulated ocean dynamics. This was done by

1North Atlantic Oscillation.
2Earth System Model.
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validating simulated ocean surface chlorophyll
against remote sensing observations. The
outcome of this analysis indicates which of
the four reconstructions is the most suitable
to provide initial conditions to be used for
predictions of ocean biogeochemistry.

The four reconstructions analyzed are
simulations of the past oceanic conditions,
also known as hindcasts. This is a
way of testing numerical models, based on
simulating past events and evaluating how
well predictions match observational data
(Doblas-Reyes et al., 2013).

Through this method, large-scale and
regional analysis were carried out to find
high skill spots, that is, areas where
the model faithfully simulates the variable,
and examining differences between the four
experiments. Large-scale assessment was
done globally and by hemispheres, with the
equatorial region separately. The studied
regions are illustrated in Fig. 2 and indicated
in Table 1. The covered period runs from
July 2002 to December 2015, with a monthly
timestep.

Fig. 2. Example of a Chl-a map from EC-Earth with the analysed regions.

Table 1. Analysed regions.

Region N.o Region Coordinates

1 North Atlantic Region 50oN-70oN, 0oW-60oW
2 Peruvian Region 0oS-20oS, 60oW-120oW
3 Equatorial Atlantic Region 7oS-7oS, 10oW-30oW
4 Namibian Region 10oS-30oS, 20oE-40oW

5 Southern Ocean Regions

5.1 Southern Atlantic Region 35oS-55oS, 50oW-10oE
5.2 Southern Indian Region 35oS-55oS, 50oE-110oE
5.3 Southern Pacific Region 35oS-55oS, 120oW-180oW
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Data and methods

Satellite data

Observational data is a crucial element in
almost any kind of research. Particularly
in Earth sciences, the amount and the
quality of information largely determines
the accuracy of an investigation. NASA’s3

Earth Observing System (EOS) is a program
conceived in the 1990s with the aim of
making progress on this issue. Aqua is one
of the satellite missions arising from EOS,
launched in May 2002. It is a near polar,
sun-synchronous satellite, which means that
its orbit combines altitude (705 km) and
inclination (98.2o) so that it crosses the
equator at the same local hour (1:30 p.m.
from south to north and 1:30 a.m. from
north to south). Aqua holds a stream of
approximately 89 gigabytes of data every
day, derived from six different instruments.
Its main field of observation focuses on
the water cycle, measuring evaporation,
water vapor, clouds, soil moisture, etc.
Furthermore, it also provides information
about variables such as phytoplankton and
biogeochemistry, among others. One of its
measuring devices is the Moderate Resolution
Imaging Spectroradiometer (MODIS).
This is a medium resolution, 36-band
spectroradiometer embracing wavelengths
from 0.41 to 14.4 µm, dealing with spatial
resolutions between 250 m and 1000 m and
a global coverage every one to two days.
MODIS provides information about numerous
atmospheric, land-surface and oceanic
features. The ocean color, phytoplankton and
biogeochemistry are included in nine bands
from 405 to 877 nm.

The essential quantity to be derived from
ocean color sensors is the spectral distribution
of reflected visible radiation upwelling from
the ocean surface and passing through
the sea-air interface (Gordon and Wang,
1994). However, satellite sensors measure the
spectral radiance that reaches the Top Of
the Atmosphere (TOA), which has spurious

contributions from different origins that must
be removed, such as light reflected by air
molecules and aerosols or attenuating effects
due to atmospheric gases and scattering. The
Remote Sensing Reflectance algorithm (Rrs)
carries out this atmospheric correction and
estimates an accurate value of the spectral
radiance upsurging from beneath the ocean
surface, normalized by the downwards solar
irradiance. The chlorophyll a algorithm
(chlor a) uses this Rrs output together with
in situ measurements to derive an empirical
relationship in the blue-to-green region of the
visible spectrum to obtain the near-surface
concentration of chlorophyll a.

The implementation of the chlor a
algorithm used in this research employs a
combination of the standard Ocean Color
(OC3) algorithm (O’Reilly et al., 2000),
when the chlorophyll concentration is higher
than 0.2 mg/m3, and the Color Index (CI)
algorithm (Hu et al., 2012), for concentrations
below 0.15 mg/m3. Between these two values,
a weighted blend approach of both algorithms
is used.

The OC3 is a three-band algorithm given
by a fourth-order polynomial relationship
between a ratio of Rrs and chlor a, with
sensor-specific coefficients (a0-a4):

log10(chlor a) =

a0 +
4∑
i=1

ai

(
log10

(
Rrs(λblue)
Rrs(λgreen)

))i
The CI is a three-band algorithm based on

the difference between Rrs in the green band
and a standard linear relation between Rrs in
the blue and red bands:

CI = Rrs(λgreen)− [Rrs(λblue) + (λgreen −
λblue)/(λred − λblue) ∗ (Rrs(λred)−Rrs(λblue))]

where λblue, λgreen and λred are the closest
wavelengths to 443, 555 and 670 nm,
respectively, for a given instrument.

The use of remote sensing for the
estimation of ocean chlorophyll involves a
certain error, especially in coastal areas,
where turbidity may play an important role
in the output of the previous algorithms
(Chen et al., 2013). In order to roughly

3National Aeronautics and Space Administration.
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correct this disparagement when comparing
observation and simulated fields, chlorophyll
concentration values greater than 20 mg/m3

were considered spurious and removed.
Products obtained from this kind of

sensors are processed at various levels, where
level 0 represents raw data as obtained
directly from the instrument. In this case,
level 3 products were used. Variables are
mapped on uniform space-time grid scales,
within an equidistant cylindrical projection
(Fig. 3). This spatial representation
transforms the globe into a rectangular grid,
in which each cell has the same size, shape
and area, with a resolution of 4.6 km (8640 x
4320 longitude/latitude).

Fig. 3. Equidistant cylindrical projection. Source:
https://www.eye4software.com

Remotely sensed data are sparse, which
means that data have missing values, for
instance due to cloud cover (Gerber et al.,
2016). On the other hand, the simulations
do not present this problem. To correctly
analyse the data, after obtaining both fields
on the same mesh, a mask was applied to each
field with the missing values of the other. The
validation is, therefore, more representative of
the model’s ability to predict this variable.

Model description

The four experiments that were evaluated in
this study come from the ocean component
of the EC-Earth model, concretely from its

current version, EC-Earth 3. The EC-Earth
model is a state-of-the-art numerical ESM
based on the ECMWF’s4 seasonal forecasting
system (Donners et al, 2012). It is formed
by the IFS5 for the atmosphere, NEMO6 for
the ocean, the land module HTESSEL7 built
in IFS and the LIM8 sea ice model, which is
part of NEMO.

One of the modules available in NEMO
is PISCES9. This is a biogeochemical
model which simulates the lower trophic
levels of marine ecosystems (phytoplankton,
microzooplankton and mesozooplankton) and
the biogeochemical cycles of carbon and
of the main nutrients (P, N, Fe, and Si).
The amount of these nutrients limits the
growth of phytoplankton, that is divided into
two classes, nanophytoplankton and diatoms,
with different requirements. For both groups,
the prognostic variables are carbon, iron
and chlorophyll biomasses, including silicon
biomass only for diatoms (Aumont et al.,
2015). These variables are presented on a
global mesh called ORCA (Fig. 4). This
is an ocean non-regular tripolar grid, which
means that the north pole is divided in two
land points (Asia and Canada), in order to
cover the whole ocean domain avoiding any
singularity point.

Fig. 4. Curvilinear tripolar grid (ORCA). Source:
https://www.geomar.de

4European Centre for Medium-Range Weather Forecast.
5Integrated Forecasting System.
6Nucleus for European Modelling of the Ocean.
7Hydrology in the Tiled ECMWF Scheme for the Surface Exchange over Land.
8Louvain-La-Neuve Ice Model.
9Pelagic Interactions Scheme for Carbon Ecosystem Studies.

6

https://www.eye4software.com
https://www.geomar.de


There are different configurations for
ORCA, depending on the horizontal
resolution. The one used in this simulations
is ORCA1, in which the resolution at the
equator is 1 degree, with a meridional
refinement down to 1/3 degree in the tropics
(362 x 292 longitude/latitude) and 75 vertical
levels. Only the surface level was used in
this dissertation, as this data was compared
against satellite measurements from the
reflected surface radiation.

Experiments

Newtonian relaxation or nudging is a simple
form of data assimilation commonly used in
meteorological modelling. It involves adding
artificial forcing terms to the governing
equations, that reflect the difference between
the model and the observed values, driving
the simulation towards a reference state
(Otte, 2007). Although it may seem optimal
to introduce large corrections to guide the
model output, there are several drawbacks to
this, as studied Ortega et al. (2017).

In this case, 3D nudging was applied, as
indicated by the third column in Table 2.

This refers to the relaxation timescales used
for the interior ocean, affecting temperature
and salinity below the mixed layer. This
values are additionally multiplied by a depth-
dependent constant (relaxation constant, τ),
which allows to modify the speed at which the
solution approaches the reference value.

In addition, surface restoring was
employed for the upper part of the ocean,
which relies on the assumption that the
ocean mixed layer can be initialised through
a proper representation of relevant processes
forced by the ocean surface (Ortega et al.,
2017). The main advantage of this technique
is the availability of ocean surface data
compared to lower levels. Surface restoring is
classically done by adding heat and freshwater
fluxes to the energy and salinity conservation
equations. The heat flux is given by γT
(associated with SSTmodel

10 − SSTtarget) and
the freshwater flux is given by γS (associated
with SSSmodel

11 − SSStarget). Furthermore,
there is a no-nudging band around the
equator, since this is a very dynamic region
and it is not convenient to force it. The four
experiments used in this research differ in
these parameters, as shown in Table 2.

Table 2. Nudging parameters for the four experiments. k represents a relaxation scale that determines τ and
M.L. refers to the mixed layer depth.

Exp. N.o Exp. ID Relaxation constant Surface restoring No-nudging

1 a1yp

Default:
τ(k=2 ⇔ z=1.5m) = 3 days
τ(k=10 ⇔ z=14m) = 3.1 days
τ(k=20 ⇔ z=61m) = 3.2 days
τ(k=30 ⇔ z=180m) = 3.8 days
τ(k=40 ⇔ z=500m) = 5.6 days
τ(k=46 ⇔ z=950m) = 9.2 days
τ(k=50 ⇔ z=1390m) = 15.4 days
τ(k=60 ⇔ z=3000m) = 84 days
τ(k=70 ⇔ z=4900m) = 329 days

Default:
γT = −40 W/m2/K
γS = −150 mm/day

3oS - 3oN

2 a1z8
τ(M.L.< z < 800m) = 10 days
τ(z > 800m) = 360 days

Default 15oS - 15oN

3 a1zs Default
γT = −600 W/m2/K
γS = −2250 mm/day

3oS - 3oN

4 a20w Default Default 6.4oS - 6.4oN

10Sea Surface Temperature.
11Sea Surface Salinity.
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Interpolation

The first step for the model validation was
to obtain both fields on the same mesh. In
this study, the low resolution model field
was transformed into the high resolution grid
of the satellite data, due to the massive
presence of missing values in the observations.
This method has to be carefully used for
small-scale studies, as increasing the model
resolution could lead to unrealistic values.
Nevertheless, the purpose of this research
ranges from considerably large regions to
global analysis.

In the model field, inland regions were
filled as missing values (NaNs12). This fact
leads to a loss of information in coastal areas
due to the interpolation. With the aim of
improving this issue, all the missing values
of every map were replaced by its zonal
mean before the interpolation, and removed
afterwards. An ordinary linear interpolation
was then carried out.

To ensure the validity of the interpolation,
several aspects were checked. The most
important one was the conservation of the
global quantity of chlorophyll. For this
purpose, both fields had to be weighted by
the grid element area, assuming that the total

area of both grids was the same (the total area
of the original grid was 0.8% lower than the
interpolated one, as shown in Table 3). The
global sum of the weighted variable had to be
similar in both cases.

Before calculating this quantity, it was
necessary to eliminate the unreal chlorophyll
previously introduced in the continental
regions, with the complication of locating
these points on the interpolated map. To this
end, a binary map was generated from the
original field, differentiating between inland
and oceanic regions (Fig. 5a). This map
was then interpolated by the nearest method
(returns the value at the data point closest
to the point of interpolation), obtaining the
continents in the new grid (Fig. 5b).

As shown in Fig. 5, the interpolation
seems to be consistent while dealing with
missing values, so it was possible to apply this
mask to the interpolated field and compare
the global sum of the weighted variable. In
this way, the obtained results (Table 3), for an
arbitrary time, allowed to assume the validity
of the interpolation method. The global sum
of chlorophyll was 0.7% higher for the original
field than for the interpolated field. Other
interpolation methods were tested and this
one offered the most accurate results.

(a) (b)

Fig. 5. Continental regions from the original field (5a) were interpolated through a binary map by the nearest
method, obtaining the continental regions in the interpolated map (5b).

12Not a Number.
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Table 3. Interpolation assessment results.

Original field Interpolated field

Maximum value (mg/m3) 4.2049 4.1751
Minimum value (mg/m3) 0 0
Global mean (mg/m3) 0.1791 0.1715
N.o of points 105704 37324800
N.o of NaNs 40160 12743345
Ratio Points/NaNs 2.632 2.929

Original/interpolated total grid area 0.992

Original/interpolated chlorophyll global sum 1.007

Metrics

There are many indices used for validating
numerical models. Each one has specific
characteristics and has to be correctly
interpreted. In this research, four different
metrics were calculated while comparing
simulated data against observations:

− Pearson’s correlation coefficient (r):
measure of the linear dependence between
two variables. It has a value between +1
(perfect direct correlation) and −1 (perfect
inverse correlation), where 0 represents a null
correlation.

r =
σxy

σx · σy

σxy =
1

n
·
n∑
i=1

(xi − x̄) · (yi − ȳ)

σx =

√√√√ 1

n
·
n∑
i=1

(xi − x̄)2

Where x refers to predictions, y to
observed values, x̄ is the mean of x (the same
for ȳ), n is the number of data, σxy is the
covariance between x and y and σx is the
standard deviation of x (the same for σy).

− Root Mean Square Error (RMSE):
measures the mean quadratic value of the
error, which means that it heavily weights
values away from the mean value. Its lower
value is 0, when the predictions are exactly

the same as the real data. It has the same
units as the analysed variable.

RMSE =

√√√√ 1

n
·

n∑
i=1

(xi − yi)2

− Mean Absolute Error (MAE): measures
the average magnitude of the error between
the observations and the data estimated by
the model. All the individual differences are
equally weighted. Its lower value is 0, when
the predictions are exactly the same as the
real data. It has the same units as the
analysed variable.

MAE =
1

n
·

n∑
i=1

| xi − yi |

− Mean Error or bias (ME): measures
whether the model overestimated or
underestimated the observational data.
A null value does not imply a perfect
correspondence with the observations,
as positive and negative errors can be
compensated. It has the same units as the
analysed variable.

ME =
1

n
·

n∑
i=1

(xi − yi)
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Results
The following results represent two types of
analysis. On one hand, temporal series of the
monthly spatial mean surface chlorophyll a
concentration (SCC onwards). In this case,
the metrics indicate how the model captures
the temporal variability of the averaged SCC.
On the other hand, temporal series of the
spatial metrics. This shows the ability of the
model to predict the spatial distribution of
the variable and the temporal variation of this
skill. Both reviews are used either in large-
scale and regional analysis.

Large-scale analysis

As a starting point, the spatial mean
and variance of the variable was globally
calculated for every month of the studied
period, for both observations and experiments
(Fig. 6). This gives an overview of
the accuracy of the model to predict the

variability of the SCC. At these scales,
the experiments barely differ, so they were
averaged for the analysis.

The model adequately reflects the seasonal
cycle of chlorophyll, with a significant
Pearson’s correlation coefficient of 0.68 (p-
value < 0.05), although it does not capture
the marked increase in SCC observed during
the last two years of the analysed period
(2014-2015). Furthermore, it is clear that the
model does not capture the spatial dispersion
of the variable, as it presents a considerably
low variance compared to the observational
data. The simulated fields present also
lower temporal variability, as showed by the
standard error bars in Fig. 7.

Monthly averages for the whole period
show that the highest global SCC occurs
during the northern summer. However, the
model underestimates the variable during the
months of high SCC and overestimates it
during the months of low SCC, that is, it
presents a less pronounced seasonal pattern.

Fig. 6. Global time series of the spatial mean and variance of SCC for both observations and experiments.
r represents the temporal correlation between the observations and the average of the four experiments.
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Fig. 7. Global monthly averages (± standard
deviation) over the analysed period for the
observations and the average of the four experiments.

The same procedure was followed for both
hemispheres and the equatorial region (10oN-
10oS) separately. As studied by Yoder et
al. (1993), among others, the Northern
Hemisphere (NH) presents higher SCC values
than the Southern Hemisphere (SH), and also
a stronger seasonal cycle (Fig. 9). The NH
presents the same SCC increase over the last
two years, as previously observed globally.

The model reasonably predicts the
variable for the NH (r = 0.54). However, it is
also remarkable that the high SCC period in
this hemisphere lasts for a few months (April,
May, June, July, August and September)
while the model just captures it for April
and May, widely underestimating the variable
the following months. In the SH, the model
shows an unreal seasonal pattern, where the
measured SCC is almost constant through
time (r = 0.43). This spurious oscillation
corresponds to higher SCC values during the
summer months, as found for the NH. Yet,
satellite data does not present this pattern
significantly in the SH.

As expected from the variable no-nudging
bands of the experiments and contrary to
both hemispheres, the equatorial region shows
differences between the four experiments.
Although the correlation coefficient is really
similar for all of them (r ∼ 0.75), the bias
of each experiment varies. Experiment a1z8

presents the lowest error (Table 4).

Table 4. Root mean square error of each experiment
for the equatorial region.

Experiment RMSE (mg/m3)

1. a1yp 0.047
2. a1z8 0.025
3. a1zs 0.053
4. a20w 0.034

Monthly averages (Fig. 10) show that the
model underestimates the SCC in the NH and
overestimates it in the SH for every month,
while it accurately predicts it in the equatorial
region. As stated above, the SH is much
more homogeneous than the NH, not only
spatially but also temporally, as evidenced by
the standard deviations presented in Fig. 10.

Apart from the temporal correlation of the
spatial mean series, the spatial correlation
was calculated map to map, obtaining
the temporal series of the corresponding
coefficient. The global spatial correlation
(Fig. 8) presents a seasonal pattern, ranging
approximately from r=0.2 to r=0.5, contrary
to that of the global mean SCC, that is,
the model is less precise during the high
SCC months. There is a subtle increase
in the maximum and minimum correlation
coefficient for the last three years of the
analysed period. There are no noticeable
differences between the experiments on the
global scale.

Fig. 8. Global spatial correlation series for each
experiment.
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Fig. 9. Time series of the spatial mean of SSC for both hemispheres and the equatorial region, either for the
observations and the experiments. r is referred to the temporal correlation between the observational data and
the averaged series of the four experiments.

Fig. 10. Monthly averages of SCC (± standard deviation) for both hemispheres and the equatorial region
(10oN-10oS) over the analysed period for the observations and the mean of the four experiments.

12



Regional analysis

In order to assess the skill of the model and
the differences between the experiments at
lower spatial scales, some key regions were
selected for the analysis (Fig. 2). The
accuracy of the simulations at these scales
shows the capacity of the model to predict
the spatial and temporal variability of high
concentration areas and the influence of the
different nudging parameters on it.

1. North Atlantic Region

This region presents a really accused
seasonal cycle, with high SCC during the
boreal summer months, as studied by Winder
and Cloern (2010). There is no data for
November and December, as the satellite
can not measure in high latitudes during
the winter due to low light conditions. It
is remarkable the increase in observational
values during 2014 and 2015, as observed for
the global and hemispheric series. As in the
other cases, the model does not capture this
variation (Fig. 12).

There are almost no differences between
the experiments in this region. The temporal

correlation of the spatial mean SCC series
(Fig. 12) was then calculated for the average
of the four experiments, obtaining a Pearson’s
correlation coefficient of 0.71.

The spatial correlation series (Fig. 11)
indicates that the model simulates the
variable with considerable precision (r values
up to 0.8) during the low SCC months, but
hugely reduces its skill during the high SCC
period (r values near 0 or even negative). The
third experiment (a1zs) shows slightly lower
correlations than the rest for certain months.

Fig. 11. Time series of the spatial correlation in the
North Atlantic region for each experiment.

Fig. 12. Time series of the spatial mean SCC in the North Atlantic region for each experiment and observations.
r is referred to the temporal correlation between the observational data and the average series of the four
experiments.
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2. Peruvian Region

The observed mean SCC (Fig. 13) shows
a very subtle seasonal variability, with higher
values during austral summer months, around
0.3 mg/m3, in phase opposition with coastal
upwelling intensity, as studied by Echevin et
al. (2008) and low values during the winter,
around 0.2 mg/m3. The model exhibits just
an opposite pattern, as the high SCC period
is displaced to NH summer months. This
fact is reflected in the temporal correlation
coefficient, with a significant negative value of
-0.18 (p-value<0.05), for the average of all the
experiments. Although the four experiments
overestimate the SCC, there are appreciable
differences in the bias between them (Table
5). Experiment a1z8 presents the lowest error.

Table 5. Root mean square error of each experiment
for the Peruvian region.

Experiment RMSE (mg/m3)

1. a1yp 0.22
2. a1z8 0.17
3. a1zs 0.24
4. a20w 0.20

On the other hand, the spatial correlation
in this region varies, coarsely, between 0.4 and
almost 0.8 (Fig. 14). Therefore, even though
the temporal variability of the monthly SCC
average is not correctly simulated, the spatial
distribution of the variable in this area is well
captured by the model. As in the spatial
mean series, the second experiment presents
the lowest mean error values.

Fig. 13. Time series of the spatial mean SCC in the Peruvian region for each experiment and observations.
r is referred to the temporal correlation between the observational data and the average series of the four
experiments.

Fig. 14. Time series of the spatial metrics for the Peruvian region for each experiment.
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3. Equatorial Atlantic Region

In this region, the greatest differences
between the different experiments were found.
The variable presents a seasonal pattern with
maximum SCC during the northern summer.
The model also follows this variability, but
with noticeable differences (Fig. 15).

Experiments a1z8 and a20w overestimate
the SCC during the summer months. On
the other hand, experiments a1yp and a1zs
overestimate the variable during the whole
period considered. This is reflected in the
temporal metrics of the averaged chlorophyll.
As in other regions, the first and the third
experiments carry out a worse simulation of
the SCC, being the second experiment the
one which better predicts the variable. The
obtained metrics are shown in Table 6.

Table 6. Metrics of the temporal mean SCC series for
each experiment for the Equatorial Atlantic region.

Experiment r RMSE (mg/m3)

1. a1yp 0.78 0.15
2. a1z8 0.86 0.13
3. a1zs 0.76 0.15
4. a20w 0.83 0.14

In line with these results, the time series
of the spatial metrics show that the first and
third experiments predict markedly worse the
SCC temporal variability, with lower values
of the correlation coefficient and higher mean
absolute error than the second and forth
experiments (Fig. 16). Experiment a1z8 is
again the most accurate one. Although the
correlation coefficient series present a lot of
noise, it shows that the minimum r values
occur during the low SCC months, and the
other way round. This is also evidenced by
the mean absolute error series.

Fig. 15. Time series of the spatial mean SCC in the Equatorial Atlantic region for each experiment and
observations.

Fig. 16. Time series of the spatial metrics for the Equatorial Atlantic region for each experiment.
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4. Namibian Region

The observed surface chlorophyll
concentration in the Namibian region presents
a seasonal pattern similar to that of a
northern hemisphere region, with maximum
values during the central months of the year.
This variability is slightly displaced in the
simulations (Fig. 17), with the maximum and
minimum values of SCC one or two months
after the ones observed. However, the model
carries out a reasonable temporal simulation
of the averaged variable along this area, with
a Pearson’s correlation coefficient of 0.54.

There is a noteworthy maximum value
of chlorophyll concentration during August
2010, not captured by the model.

The spatial correlation is shown in Fig.
18, with significantly high r values between
0.5 and almost 0.8. This shows that the
spatial distribution of the simulated SCC is
quite consistent with the satellite data, being
the region that presents the highest minimum
spatial correlation value along the analysed
period. Experiment a1z8 presents, in this
case, lower correlation with the observations
than the other experiments.

Fig. 17. Time series of the spatial mean SCC in the Namibian region for each experiment and observations.

Fig. 18. Time series of the spatial metrics for the Namibian Region for each experiment.
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5. Southern Ocean Regions

These three regions (Southern Atlantic
region, Southern Indian region and Southern
Pacific region), spanning exactly the same
latitudinal fringe, were included due to the
similar pattern they expose. In all of
them, specially in the Atlantic and Indian

oceans, the model simulates the maximum
and minimum SCC periods a few months
before it really takes place, as showed by
the observations. None of the experiments
improve the predictions in this regard, as
there are practically no differences between
them.

Fig. 19. Time series of the spatial mean SCC in three Southern Ocean regions (Atlantic, Indian and Pacific)
for each experiment and observations.
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Correlation maps

Finally, a temporal correlation analysis
was done for every point of the grid.
The Pearson’s correlation coefficient was
calculated for the temporal series (162
months) of each point between the four
experiments and the observations separately,
obtaining four correlation maps (Figs. 20, 21,
22 and 23).

To this end, the seasonal cycle was
removed from every point temporal series,
both in the observations and in the
simulations. The procedure was to subtract
from each monthly SCC value the average
of that specific month in the whole period.

The correlation was then calculated for the
anomalies series. This was done to obtain
the real skill of the model in predicting
interannual anomalies of SCC, assuming that
the seasonal cycle had to be captured in the
simulations.

Contrary to the previous analysis, the
correlation maps do not show significant
differences between the experiments.

The most remarkable regions of skill for
the four experiments are: the mid-latitude
northern Atlantic, the western part of the
mid-latitude southern Atlantic, a great part
of the Indian Ocean and the tropical region
of the western Pacific Ocean.

Fig. 20. Correlation map for the experiment a1yp.
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Fig. 21. Correlation map for the experiment a1z8.

Fig. 22. Correlation map for the experiment a1zs.

Fig. 23. Correlation map for the experiment a20w.
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Discussion
Regarding the large-scale analysis, the model
correctly simulates the seasonal cycle of the
global mean SCC (r = 0.68), with maximum
values during the northern summer, although
this oscillation is less pronounced in the
simulations, as shown in Figs. 6 and
7. This could be related with the spatial
homogeneity of the simulated SCC fields (Fig.
6): the model overestimates the low SCC
regions, this is, the open ocean, that has
less seasonal variability, and underestimates
the high SCC regions, generally coastal areas,
which markedly vary over the year. As
a result, the chlorophyll predictions present
lower spatial and temporal fluctuations. On
the other hand, high spatial variances of
satellite data reflect the patched distribution
of chlorophyll a over the oceans.

As studied by Yoder et al. (1993),
the northern hemisphere shows higher SCC
values than the southern hemisphere. Despite
the larger ocean area in the SH, higher
mean annual concentrations of SCC in the
NH lead to similar hemispherical chlorophyll
contributions. Furthermore, the observed
global seasonal cycle coincides with that
of the NH (r = 0.98), which indicates
that seasonal oscillations in the overall SCC
are given by the NH seasonality. This
pattern leads to a better simulation of the
variable in the NH (r = 0.54). In the SH,
the simulations considerably overestimate the
seasonality of the variable (r = 0.43), with
marked chlorophyll peaks during the austral
summer. Satellite measurements show a much
more homogeneous SCC field in time for
this hemisphere. This could be a result of
the larger open ocean area, which, as stated
above, has lower variability during the year.

The global increase in the SCC observed
in the last years of the analysed period,
not captured by the model, has its origin
in the NH, concretely in the North Atlantic
region, as clearly exposed in Fig. 12. This

could be due to several factors, such as the
North Atlantic Oscillation, variability in the
AMOC 13, the sea surface temperature or
the ocean-mixing strength, as indicated by
Li et al. (2016). These and other potential
drivers could be examined in detail in future
researches, in order to improve the model’s
response in this kind of events.

The equatorial region is the best simulated
by the model (r = 0.75). In addition, it is the
only one that presents noticeable differences
between the experiments in the large-scale
analysis. This could be related with the no-
nudging area established in each experiment,
where the solutions are not guide towards the
observations, as in the nudged regions. The
one with a wider no-nudging fringe (15oS-
15oN), experiment a1z8, is the one that better
simulates the variable near the equator, as
shown by the root mean square error in Table
4. This fact is supported by the analysis of the
Peruvian and the Equatorial Atlantic regions,
where the experiment a1z8 is also the most
accurate in predicting the SCC.

As studied by Skyllas (2018), the model
showed a tendency to move forward the
seasonality of the variable, in this case in
the southern hemisphere (Fig. 19). The
mechanisms behind this pattern could be
numerous and a deeper assessment should be
carried out to examine its origin.

Finally, a cursory analysis of another
biogeochemical variable was carried out. The
nitrate (NO3) field is closely related with
chlorophyll concentration as it is one of the
main nutrients needed by phytoplankton. In
accordance with the SCC simulations, Fig.
24 shows that the experiments with a wider
no-nudging band around the equator (a1z8
and a20w) better simulate the surface NO3

field. Driving the solution towards a reference
state in this region generates strong vertical
velocities. This leads to an overestimated
transport of nutrients to the ocean surface,
therefore, to higher chlorophyll concentration
values.

13Atlantic Meridional Overturning Circulation.
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Fig. 24. Difference between the NO3 field for each experiment and the World Ocean Atlas climatology.

Conclusions

Near-term climate prediction is becoming
a widely researched branch of Earth
sciences. Earth system models are the
state-of-the-art tools available to this end.
However, the assessment of the capacity of
the simulations to predict biogeochemical
variables remains almost unexplored. In this
study, four different experiments from the
ocean component of EC-Earth, NEMO, were
evaluated in order to assess the accuracy of
the simulations derived from this model and
to find the best set of initial conditions for
predictions of ocean biogeochemistry. The
main results obtained from this validation
are set out below:

- The model adequately simulates the global
seasonal cycle of SCC, that has its origin in
the northern hemisphere.

- The simulated variable is more homogeneous
than satellite observations, both spatially and
temporally.

- The model did not capture a significant
increase in the SCC during the last years
of the analysed period. This could be due

to deficiencies in other components of the
model by not predicting specific processes
that regulate the SCC.

- This SCC increase comes from the North
Atlantic region, where phenomena like NAO
or the AMOC variability have direct influence
over the chlorophyll fields, as studied by Li et
al. (2016).

- The NH presents higher values of SCC,
a stronger seasonal pattern and better
agreement with the observations than the SH.
The austral hemisphere has a slight seasonal
cycle, largely overestimated by the model.
None of them present noticeable differences
between the four experiments.

- The equatorial region shows the most
accurate predictions for the temporal series
of the spatial mean SCC, regarding the large-
scale analysis.

- In the equatorial region, the experiment
a1z8 is the one that best fits the chlorophyll
a measurements, followed by the experiment
a20w. This fact is confirmed by the
Peruvian and the Equatorial Atlantic regions.
These differences have its origin in the no-
nudging fringe around the equator left in each
experiment.
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- The three Southern Ocean regions show the
same pattern: the model moves forward the
seasonality of the variable a few months.

- The improvement in the second experiment
is not reflected in the correlation maps,
where the seasonal cycle was removed before
estimating the correlation coefficients.

- The NO3 simulations confirm that the
experiments a1z8 and a20w represent
better initial conditions for predictions of
ocean biogeochemistry than the other two
experiments.
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Marina y Oceanograf́ıa. Vol. 48, No 1. doi:
10.4067/S0718-19572013000100011.

Winder, M. & Cloern, J. (2010). The annual
cycles of phytoplankton biomass. The Royal
Society Publishing. doi: 10.1098/rstb.2010.0125.

Lee. K.W., Yeh, S.W., Kug, J.S. & Park, J.Y.
(2014). Ocean chlorophyll response to two types
of El Niño events in an ocean-biogeochemical
coupled model. J. Geophys. Res Oceans, 119,
933-952. doi: 10.1002/2013JC009050.

Séférian, R., Bopp, L., Gehlen, M.,
Swingedouw, D., Mignot, J. Guilyardi,
E. & Servonnat, J. (2013). Multiyear
predictability of tropical marine productivity.
www.pnas.org/cgi/doi/10.1073/pnas.1315855111.

Gordon, H. & Wang, M. (1994). Retrieval
of water-leaving radiance and aerosol optical
thickness over the oceans with SeaWiFS: a
preliminary algorithm. University of Miami. doi:
0003-6935/94/030443-10$06.00/0.

O’Reilly, J., Maritorena, S., Mueller, J.,
Strutton, P., Cota, G., Phinney, D. & Culver,
M. (2000). Ocean color chlorophyll a algorithms
for SeaWiFS, OC2 and OC4: Version 4. NASA
Technical Memorandum. 2000-206892.

Hu, C., Lee, Z. & Franz, B. (2012).
Chlorophyll a algorithms for oligotrophic
oceans: a novel approach based on three-band
reflectance difference. J. Geophys. Res. doi:
10.1029/2011JC007395.

Chen, J., Cui, T., Zhang, M. & Wen, Z.
(2013). A review of some important technical
problems in respect of satellite remote sensing of
chlorophyll-a concentration in coastal waters.
IEEE Journal of selected topics in applied
Earth observations and remote sensing. doi:
10.1109/JSTARS.2013.2242845.

Gerber, F., Furrer, R., Schaepman-Strub, G., de
Jong, R. & Schaepman, M. (2016). Predicting
missing values in spatio-temporal satellite data.
University of Zurich.

Donners, J., Basu, C., Mckinstry, A. & Asif, M.
(2012). Performance Analysis of EC-Earth 3.1.
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