Multi-annual forecasts of Atlantic tropical cyclones in a climate service context

Louis-Philippe Caron

Climate Forecasting Unit, IC3, Barcelona

Bermuda, September 25th, 2014

Objectives

- Evaluating the capability of initialized GCMs at predicting Atlantic Tropical Cyclone activity over a 5-year horizon
- Evaluating whether skill comes from persisting anomaly introduced in the systems or if models show true predicting skill
 - Can we predict the climate shifts from active to inactive regime (and vice-versa)?

adirr uhf or eb mu N

Climate factors influencing Atlantic hurricane activity

Climate factor	Description	Timescale
Atlantic Multidecadal Oscillation (AMO or AMV)	Oscillation in North Atlantic Ocean Temp.	Decadal
El Niño Southern Oscillation	Oscillation in Tropical Annual (~3-5 yr cycle) Pacific Ocean Temp.	
West African Monsoon	Rainfall over Sahel region	Annual
North Atlantic Oscillation (NAO)	Seesaw pattern in sea level Annual pressures b/w Iceland and the Azores	
Solar activity		11-year cycle
Ozone concentration in upper atmosphere		Annual
Dust/aerosols over the Atlantic	Dust originating from Sahara desert	Annual
Maidden-Julian Oscillation	Eastward propagating Intra-seasonal disturbances in the tropics	

Strong link b/w **AMO** and **hurricane** numbers

AMO: Oscillation in North Atlantic sea surface temperature

Climate time scales

Progression from initial-value problems with weather forecasting at one end and multi-decadal to century projections as a forced boundary condition problem at the other, with climate prediction (sub-seasonal, seasonal and decadal) in the middle. Prediction involves initialization and systematic comparison with a simultaneous reference.

Daily Weather Forecasts	Seasonal to ~1 Year Outlooks	Decadal Predictions	Multi-Decadal to Century Climate Change Projections
Initial Valu Problem	9		time scale
			Forced Boundary Condition Problem

Meehl et al. (2009)

Why do decadal forecasts work?

- Over the near term (a decade or so), uncertainty in climate comes mostly from natural variability
- Portion of the interannual and interdecadal variability is associated with relatively slow ocean changes
- If ocean circulation can be predicted based on knowledge of current state of the ocean, then prediction of temperature, rainfall, etc, correlated with these changes should be possible

Ensemble initialized near-term predictions

CMIP5: ensemble forecast systems using an initialized ESM

Experimental setup

Experimental setup

Experimental setup

Ensemble climate forecast systems

Assume a multi-model ensemble system with coupled initialized GCMs

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Two techniques are typically used to evaluate TC activity in climate simulations:

- 1. Direct analysis of tropical cyclones statistics
 - Low-res GCMs are bad at simulating TC activity in the Atlantic
 - Huge amount of data required

Indirectly through changes in large-scale fields that impact TC activity

Climate Forecasting Unit

TC metrics are: •Number of hurricanes •Number of major hurricanes •Number of hurricane days •Number of major hurricane days

Climate Forecasting Unit

_റ് 8

_റ് ഒ

_ń 4

-ų 5

ດ່ຄ

_∩'8

ACC, 5-year mean detrended SST – Initialized Forecasts

ACC Year 1-5

ACC, 5-year mean MSLP – Initialized Forecasts

Climate Forecasting Unit

How does this skill translate into forecasting cyclone activity?

ACC: 5-yr predicted index vs observed activity

Accumulated Cyclone Energy (ACE): is the square of the max wind speed every 6 hours. The ACE of a season is the sum of the ACE for each storm and takes into account the <u>number</u>, <u>strength</u>, and <u>duration</u> of all the tropical storms in the season.

What is the probability that the 5-yr mean activity will be above the climatological mean?

0.0

-4

-2

0

2

4

(Average Years 2-6) – (Year 1)

Real-time forecast

- Probability that period 2013-2017 will be above average:
 - HadCM3: 55%
 - HadGEM: 100% []]
 - GDFL CM2.1: ??
- Above climatology, but trend is downward

- MIROC5: ?? (upcoming for 2014-2018)
- MPI-ESM: ?? (upcoming for 2014-2018)

Summary

- Initialized GCMs do seem capable of predicting AMO index, which is linked to Atlantic TC level, at multi-annual timescale (5yrs)
- Skill doesn't come only from persistence, i.e. we can predict shift between active and quiet phases

Climate Forecasting Unit

Thank you