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Abstract

The great potential and quick evolution of the High Performance Computing (HPC)

encouraged the necessary research to adapt the current climate models so they will

be able to be executed with efficiency in supercomputers that are being developed right

now. For this work, tests about the current scalability of the NEMO oceanic model were

performed and the the future problems that would emerge in the eventual future exa-

scale executions are discussed. Some possible ideas to face these issues are introduced

and , lastly, a new communication pattern to improve the current one is proposed and

evaluated.



Resum

El gran potencial i la ràpida evolució de la Computació d’Altes Prestacions (HPC) han

impulsat la recerca necessària per a adaptar els models climàtics existents amb la finalitat

de poder-los executar amb eficiència en els super ordinadors que s’estan desenvolupant.

Per a aquest treball s’han dut a terme mesures del rendiment per determinar quins

són els problemes actuals d’escalabilitat del model climàtic oceànic NEMO i es discuteix

quins problemes més poden emergir en un futur en què eventualment s’execucti el model

en milions de processadors. Per acabar, també es presenta una proposta de millora del

patró de comunicacions.



Resumen

El gran potencial y la rápida evolución de la Computación de Altas Prestaciones (HPC)

han impulsado la investigación necesaria para adaptar los modelos climáticos existentes

con la finalidad de poder ejecutarlos con eficiéncia en los super computadores que se estan

desarrollando. Para este trabajo se han llevado a cabo mediciones del rendimiento para

determinar quales son los problemas actuales que limitan la escalabilidad del modelo

climático oceánico NEMO y se discute qué problemas más pueden emerger en un futuro

en que eventualmente se ejecute el modelo en millones de procesadores. Para terminar,

también se presenta una propuesta de mejora del patrón de comunicaciones.
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Chapter 1

Introduction

The subject of the current thesis is the study of the scalability of the NEMO1 model

considering the future possibility of performing executions on computers that are capable

to achieve one exaFLOP2. The computation with this capacity has been referred as exa-

scale computing.

By ”scalable” ,the general meaning is the ability to use additional computational re-

sources effectively to solve increasingly larger problems. Many factors contribute to

scalability, including the architecture of the parallel computer and the parallel imple-

mentation of the algorithm. However, one important issue is often overlooked: the

scalability of the algorithm itself. Here, scalability is a description of how the total

computational work requirements grow with problem size, which can be discussed inde-

pendently of the computing platform.

The model in which the tests have been performed is the NEMO model, but some of

the conclusions can be extrapolated to other models and HPC applications.

The NEMO model is an oceanic general circulation model (OGCM) developed in the

European community 3.

A general circulation model (GCM), a type of climate model, is a mathematical model

of the general circulation of a planetary atmosphere or ocean. It is based on the

Navier–Stokes equations on a rotating sphere with thermodynamic terms for various

energy sources (radiation, latent heat). These equations are the basis for complex com-

puter programs commonly used for simulating the atmosphere or ocean of the Earth.

1Nucleus for European Modelling of the Ocean
2One exaFLOPS is a thousand petaFLOPS or a quintillion, 1018, floating point operations per second.
3The main centers involved in the development are CNRS (France), Mercator-Ocean (France) , NERC

(UK), UKMO (UK), CMCC, (Italy) and INGV(Italy).
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Atmospheric and oceanic GCMs (AGCM and OGCM) are key components of global cli-

mate models along with sea ice and land-surface components. GCMs are widely applied

for weather forecasting, understanding the climate, and projecting climate change.

Although it is possible to execute this model in HPC platforms with a large number

of processors, the achieved speed-up with the current model and the efficiency are far

to be good and it would be worth the effort to improve the performance of the model

on HPC’s. In this thesis, the current and future problems that need to be faced in

order to reach good speed-up and efficiency are studied. For the 3.6 and older ver-

sions of NEMO the technical problems are limiting the model scalability more than the

method-induced problems but when focusing in the future exa-scale executions, scalable

numerical algorithms are also required.



Chapter 2

Brief introduction to NEMO

The Nucleus for European Modelling of the Ocean (NEMO) is a framework of ocean

related engines, namely OPA1 for the ocean dynamics and thermodynamics, LIM2 for

the sea-ice dynamics and thermodynamics, TOP3 for the biogeochemistry both transport

(TRP) and sources minus sinks (LOBSTER, PISCES)4. It is intended to be a flexible

tool for studying the ocean and its interactions with the other components of the earth

climate system (atmosphere, sea-ice, biogeochemical tracers, ...) over a wide range of

space and time scales.

The ocean engine of NEMO is a primitive equation model adapted to regional and

global ocean circulation problems. Prognostic variables are the three-dimensional ve-

locity field, a linear or non-linear sea surface height, the temperature and the salinity.

In the horizontal direction, the model uses a curvilinear orthogonal grid and in the ver-

tical direction, a full or partial step z-coordinate, or s-coordinate, or a mixture of the

two. The distribution of variables is a three-dimensional Arakawa C-type grid. Various

physical choices are available to describe ocean physics, including TKE 5 , GLS 6 and

KPP vertical physics 7 . Within NEMO, the ocean is interfaced with a sea-ice model

(LIM v2 and v3), passive tracer and biogeochemical models (TOP) and, via the OASIS

coupler, with several atmospheric general circulation models. It also support two-way

grid embedding via the AGRIF software.

This model has been used for a wide range of applications, both regional or global, as a

forced ocean model and as a model coupled with the atmosphere.

1OPA = Océan PArallélisé
2LIM= Louvain)la-neuve Ice Model
3TOP = Tracer in the Ocean Paradigm
4Both LOBSTER and PISCES are not acronyms just name
5Turbulent Kinetic Energy
6Generalized Least Squares
7K-Profile Parametrization
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Here can be found a very brief summary of the basic equations solved by the model and

the methodology used to discretise the problem to move from continuous equations to

a discrete space where is posible to solve numerically.

This brief introduction to NEMO and the sections below are from the reference documentation[1]

of the NEMO model. Here some of the basic elements of NEMO are explained.For a

most extended knowladge , the reference documentation is recomended.

Following the same order as the one used in the reference documentation of NEMO ,

this summary is organised in as follows:

• Model Basics

• Domain Discretisation

• Boundary Conditions

• Physical Parametrisations

2.1 Model Basics

The model basics, i.e. the equations and their assumptions, the vertical coordinates

used, and the subgrid scale physics. This part deals with the continuous equations of

the model (primitive equations, with potential temperature, salinity and an equation of

state). The equations are written in a curvilinear coordinate system, with a choice of

vertical coordinates (z or s, with the rescaled height coordinate formulation z*, or s* ).

Momentum equations are formulated in the vector invariant form or in the flux form.

Dimensional units in the meter, kilogram, second (MKS) international system are used

throughout.

2.1.1 Primitive Equations

Doing some approximations, the vector invariant form of the primitive equations in

the (i,j,k) vector system provides the following six equations (namely the momentum

balance, the hydrostatic equilibrium, the incompressibility equation, the heat and salt

conservation equations and an equation of state):

∂Uh

∂t
= −

[
(∇×U)×U +

1

2
∇
(
U2
)]

h

− f k×Uh −
1

ρo
∇hp+ DU + FU (2.1a)
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∂p

∂z
= −ρ g (2.1b)

∇ ·U = 0 (2.1c)

∂T

∂t
= −∇ · (T U) +DT + F T (2.1d)

∂S

∂t
= −∇ · (S U) +DS + FS (2.1e)

ρ = ρ (T, S, p) (2.1f)

where ∇ is the generalised derivative vector operator in (i, j,k) directions, t is the time, z

is the vertical coordinate, ρ is the in situ density , ρo is a reference density, p the pressure,

f = 2Ω · k is the Coriolis acceleration (where Ω is the Earth’s angular velocity vector),

and g is the gravitational acceleration. DU, DT and DS are the parameterisations

of small-scale physics for momentum, temperature and salinity, and FU, F T and FS

surface forcing terms.

2.1.2 The Horizontal Pressure Gradient

The total pressure at a given depth z is composed of a surface pressure ps at a reference

geopotential surface (z = 0) and a hydrostatic pressure ph such that: p(i, j, k, t) =

ps(i, j, t) + ph(i, j, k, t). The latter is computed by integrating (2.1b), assuming that

pressure in decibars can be approximated by depth in meters in (2.1f). The hydrostatic

pressure is then given by:

ph (i, j, z, t) =

∫ ς=0

ς=z
g ρ (T, S, ς) dς (2.2)

2.2 Domain Discretisation

Once we know the basic equations that we need to solve, the next step is to deal with

the discrete equations.

• We talk about the time domain. The model time stepping environment is a three

level scheme in which the tendency terms of the equations are evaluated either

centered in time, or forward, or backward depending of the nature of the term.

• The other domain that we need to talk about is the space domain. The model

is discretised on a staggered grid (Arakawa C grid) with masking of land areas.

Vertical discretisation used depends on both how the bottom topography is rep-

resented and whether the free surface is linear or not. Full step or partial step
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z-coordinate or s- (terrain-following) coordinate is used with linear free surface

(level position are then fixed in time). In non-linear free surface, the correspond-

ing rescaled height coordinate formulation (z* or s* ) is used (the level position

then vary in time as a function of the sea surface heigh).

• Two other things that the model need to discretise are the prognostic equations for

the active tracers and the momentum. Explicit, split-explicit and filtered free sur-

face formulations are implemented. A number of numerical schemes are available

for momentum advection, for the computation of the pressure gradients, as well as

for the advection of tracers (second or higher order advection schemes, including

positive ones).

2.3 Domain Decomposition

Domain decomposition methods solve a boundary value problem by splitting it into

smaller boundary value problems on subdomains and iterating to coordinate the solution

between adjacent subdomains.

When we have a discrete domain defined, we can determine how to distribute the domain

in order to be able to parallelise the model.

2.4 Boundary Conditions

• We also need to describe the Surface boundary conditions. Those can be im-

plemented as prescribed fluxes, or bulk formulations for the surface fluxes (wind

stress, heat, freshwater). The model allows penetration of solar radiation There

is an optional geothermal heating at the ocean bottom. Within the NEMO sys-

tem the ocean model is interactively coupled with a sea ice model (LIM) and

with biogeochemistry models (PISCES, LOBSTER). Interactive coupling to At-

mospheric models is possible via the OASIS coupler. Two-way nesting is also

available through an interface to the AGRIF package (Adaptative Grid Refine-

ment in Fortran) . The interface code for coupling to an alternative sea ice

model (CICE) has now been upgraded so that it works for both global and re-

gional domains, although AGRIF is still not available.

• Other model characteristics are the lateral boundary conditions (chapter LBC).

Global configurations of the model make use of the ORCA tripolar grid, with

special north fold boundary condition. Free-slip or no-slip boundary conditions are
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allowed at land boundaries. Closed basin geometries as well as periodic domains

and open boundary conditions are possible.

2.5 Physical Parametrisations

• Finally , the physical parameterisations are described. The model includes an

implicit treatment of vertical viscosity and diffusivity. The lateral Laplacian and

biharmonic viscosity and diffusion can be rotated following a geopotential or neu-

tral direction. There is an optional eddy induced velocity with a space and time

variable coefficient. The model has vertical harmonic viscosity and diffusion with

a space and time variable coefficient

2.6 Namelists

The namelist allows to input variables (character, logical, real and integer) into the code.

There is one namelist file for each component of NEMO (dynamics, sea-ice, biogeochem-

istry...) containing all the FOTRAN namelists needed. The implementation in NEMO

uses a two step process. For each FORTRAN namelist, two files are read:

1. A reference namelist ( in CONFIG/SHARED/namelist ref ) is read first. This file

contains all the namelist variables which are initialised to default values

2. A configuration namelist ( in CONFIG/CFG NAME/EXP00/namelist cfg ) is

read aferwards. This file contains only the namelist variables which are changed

from default values, and overwrites those.

A template can be found in NEMO/OPA SRC/module.example The effective namelist,

taken in account during the run, is stored at execution time in an output namelist dyn

(or ice or top) file.

Model outputs management and specific online diagnostics are described in chapters

DIA. The diagnostics includes the output of all the tendencies of the momentum and

tracers equations, the output of tracers tendencies averaged over the time evolving mixed

layer, the output of the tendencies of the barotropic vorticity equation, the computation

of on-line floats trajectories... Chapter OBS describes a tool which reads in observation
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files (profile temperature and salinity, sea surface temperature, sea level anomaly and sea

ice concentration) and calculates an interpolated model equivalent value at the observa-

tion location and nearest model timestep. Originally developed of data assimilation, it is

a fantastic tool for model and data comparison. Chapter ASM describes how increments

produced by data assimilation may be applied to the model equations. Finally, Chap-

ter CFG provides a brief introduction to the pre-defined model configurations (water

column model, ORCA and GYRE families of configurations).

The model is implemented in Fortran 90, with preprocessing (C-pre-processor). It

runs under UNIX. It is optimized for vector computers and parallelised by domain

decomposition with MPI. All input and output is done in NetCDF (Network Common

Data Format) with a optional direct access format for output. To ensure the clarity and

readability of the code it is necessary to follow coding rules. The coding rules for OPA

include conventions for naming variables, with different starting letters for different types

of variables (real, integer, parameter. . . ). Those rules are briefly presented in Appendix

Apdx D and a more complete document is available on the NEMO web site.

The model is organized with a high internal modularity based on physics. For exam-

ple, each trend (i.e., a term in the Right Hand Side of the prognostic equation) for

momentum and tracers is computed in a dedicated module. To make it easier for the

user to find his way around the code, the module names follow a three-letter rule. For

example, traldf is a module related to the TRAcers equation, computing the Lateral

DiFfussion. Furthermore, modules are organized in a few directories that correspond to

their category, as indicated by the first three letters of their name (Tab. Tab chap).

The manual mirrors the organization of the model. After the presentation of the con-

tinuous equations (Chapter PE), the following chapters refer to specific terms of the

equations each associated with a group of modules (Tab. Tab chap).
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Table 2.1: Organization of Chapters mimicking the one of the model directories.

Chapter STP - model time STePping environment

Chapter DOM DOM model DOMain

Chapter TRA TRA TRAcer equations (potential temperature and salinity)

Chapter DYN DYN DYNamic equations (momentum)

Chapter SBC SBC Surface Boundary Conditions

Chapter LBC LBC Lateral Boundary Conditions (also OBC and BDY)

Chapter LDF LDF Lateral DiFfusion (parameterisations)

Chapter ZDF ZDF vertical (Z) DiFfusion (parameterisations)

Chapter DIA DIA I/O and DIAgnostics (also IOM, FLO and TRD)

Chapter OBS OBS OBServation and model comparison

Chapter ASM ASM ASsiMilation increment

Chapter MISC SOL Miscellaneous topics (including solvers)

Chapter CFG - predefined configurations (including C1D)



Chapter 3

How does NEMO Work?

In this chapter it will be explained how some parts of the NEMO model are implemented

so that it can be better understood what is causing the problems on the scalability of

NEMO.

3.1 Domain Definition

As NEMO is a global model, the domain must cover all the earth surface. What is

necessary to be defined is the grid configuration. The NEMO model can work with

different grid configurations.

ORCA is the generic name given to a set of global ocean configurations. Its specificity

lies on the horizontal curvilinear mesh used to overcome the North Pole singularity found

for geographical meshes.

The ORCA reference grid is ORCA2 and its resolution approximately 2 degrees but it

differs depending on the geographical zone of the earth. The figures 3.1, 3.2 and 3.3

show how is the tripolar mesh of ORCA2. The dimensions of the mesh ORCA 2 are 182

x 149 for a total of 27118 points.

Apart from the ORCA2 there are also other ORCA configurations with different resolu-

tions, but these configurations are not included in the NEMO reference configurations.

The grid sizes of some of the available ORCA configurations are listed on the table 3.1.

The amount of points determines the computational cost, the need for scale the model

and also the efficiency that the scaling can reach. Higher resolutions implies more com-

putational cost, requires more resources and more processors to be able to perform

10
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name npi npj points

ORCA2 182 149 27118
ORCA1 362 292 105704
ORCA05 722 511 368942
ORCA025 1440 1021 1470240

Table 3.1: Number of rows, columns and total number of horizontal grid points for
the different resolutions of the ORCA grid.

simulations in a acceptable time. Since there are more computation for each communi-

cation and the overlapping is smaller,the efficiency can be better.

There are also other configurations apart from the ORCA configuration. The other kind

of configuration that are also included in the reference configurations are the GYRE

configurations.

Their characteristics are listed below:

1. Idealized configuration representing double gyres in the North hemisphere,

2. Beta-plane with a regular grid spacing at 1 degree horizontal resolution,

3. 31 vertical levels,

4. Forced with analytical heat, freshwater and wind-stress fields
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Figure 3.1: ORCA2 grid representation.
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Figure 3.3: North pole view of ORCA2 grid indexation.



15

3.2 Domain Decomposition

To parallelize the computation of the discrete equations, the program uses a domain

decomposition method to split it into different sub-domains. Each processor has its own

local memory and computes the model equation over a sub-domain of the whole model

domain. The domain decomposition methods solve a boundary value problem by split-

ting it into smaller boundary value problems on sub-domains and iterating to coordinate

the solution between adjacent sub-domains. The sub-domain boundary conditions are

specified through communications between processors which are organized by explicit

statements (message passing method).

The parallelization strategy is defined by the physical characteristics of the ocean model.

Second order finite difference schemes lead to local discrete operators that depend at

the very most on one neighbouring point. That means it is necessary an overlapping

between the sub-domains to solve the equations.

Each sub-domain computes its own surface and bottom boundary conditions and has a

side wall overlapping interface which defines the lateral boundary conditions for compu-

tations in the inner sub-domain. The overlapping area consists of the two rows at each

edge of the sub-domain. After a computation, a communication phase starts: each pro-

cessor sends to its neighbouring processors the update values of the points corresponding

to the interior overlapping area to its neighbouring sub-domain (i.e. the innermost of

the two overlapping rows).

Due to the overlapping , the shape factor becomes important. The current decomposition

is made in rectangular sub-domains and when the the sub-domains are squares, the

overlapping becomes minimum (Figure 3.4).
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Figure 3.4: Comparison of the overlapping size with two different shapes.

In the current code, it is not necessary to specify the number of sub-domains in each

dimension since it is decided automatically to choose the best decomposition (the de-

composition with the best shape-factor, i.e. lowest overlapping).

3.3 Communications

All the different modules in the model use the same communication routine.
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The first routine used to parallelise the NEMO dates back to 1994, and the same routine

with several improvements is still used in the current code.

While the firsts versions of the code worked with blocking communications in both send

and receive subroutines, the current communication routine allows the user to select the

kind of communications that is to be used to send messages (Send, Isend, Bsend) but it

is still using blocking communications to receive the messages.

The communication routine is coded using the following pattern:

1. Send a message to the west and east neighbour

2. Wait for a message from the west neighbour.

3. Receive the message from the west.

4. Wait for a message from the east neighbour.

5. Receive the message from the east.

6. Wait until all sent messages are received by the neighbours (east - west).

7. Send a message to the north and south neighbour

8. Wait for a message from the north neighbour.

9. Receive the message from the north.

10. Wait for a message from the south neighbour.

11. Receive the message from the south.

12. Wait until all sent messages are received by the neighbours (north - south)

In chapter 4 the problems that emerge from this communication paradigm are discussed

and in chapter 5 it is analysed if its possible to improve the current pattern with some

easy-to-apply changes. Several improvements are proposed and tested and the results

show that it would be interesting to apply it into the NEMO code.
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Figure 3.5: Current NEMO communication pattern



Chapter 4

Nemo Profiling

Sometimes when thinking about scalability problems, the ideas that emerge are only

technical related issues and usually a very important one is overlooked: the scalability

of the algorithms.

Although in the current implementation of NEMO those elements are not the main

problem (there are also technical problems with more weight), they could also be the

bottleneck for the scalability in the future and it is important to have all this elements

in mind.

Usually both technical and methodological problems are mixed, and one example are

the communications.

The method used by the model requires very frequent communications between pro-

cesses. The communication itself is not necessarily a problem if the network system is

fast enough, but there is a problem with the need of synchronisation.

The need for synchronisation forces the processes to wait each other every time that the

model need to communicate.

Even without parallel computing, the execution time for a specific routine is not always

the same since there are multiple factors that can affect the performance of the com-

putation. The use of shared resources can cause a further increase of those differences.

And even if the computation time of each process was always the same for all of them,

the need for synchrony produces that the use of the shared resources is not distributed

in time, i.e. all the processes use some specific resource at the same time. It causes that

the hardware resources needed to achieve a good performance become much more than

they could be if the use of the resources was not so simultaneous.
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In this chapter some of the problems found on the current NEMO are discussed and

some ideas to improve these problems are proposed1 In the chapter 5 a deeper analysis

of the technical solutions proposed improve communication is introduced.

4.1 Method Limitations

The main limitations now existing, caused by the methods applied to solve the differen-

tial equations, are the overlapping of the sub-domains due to the discretisation of the

domain and the use of synchronous communication.

When the problems that we want to solve come from the methods chosen, what should be

done instead of trying to modify the current code is to think in alternative methods.

To decide when it is worth to change the current algorithms for another one, the weakest

and the strongest points of each one must be evaluated , given that computational needs

and communication needs could be opposed. As an example of this, in the section 4.1.2

the loss of efficiency due to using the extra-halo strategy for the solver is evaluated.

4.1.1 Overlapping

The overlapping caused by the domain discretisation among different processes implies a

loss of efficiency. The impact of this factor on the scalability depends on the configuration

resolution. With a specific number of processors, the bigger the domain is, the smaller

the impact of the overlapping , since the proportion between the overlapped points with

the non-overlapped points becomes smaller .

The problem of the loss of efficiency due to the overlapping becomes relevant when the

performance of simulations of low resolution with a very low wall-clock time is required.

For higher resolutions, the impact of the overlapping it is still not so relevant.

Here is an approximate effect of the overlapping in the theoretical limits of efficiency

and speed up.

Assuming the shape of the sub-domains are close to a square, the sub-domain size could

be modelled as :

SDS =
GS

n
+ 4 ·

√
GS

n
(4.1)

Where SDS is the Sub Domain Size, GS is the original grid size and n the number of

sub-domains.

1The proposed ideas to improve the program’s performance have not been tested on the NEMO code.
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Figure 4.1: The effect of the overlapping on the limit of efficiency

The figures 4.1 and 4.2 are graphical representations derived from of the equation 4.1

for three different resolutions. (See the table 3.1 )

The figure 4.1 shows the efficiency constraining due to the overlapping when the number

of processes grows and the figure 4.2 shows the maximum speed-up achievable.

The only way to solve the overlapping problem is changing the current algorithm to

solve the model equations for another method that does not need overlapping of the

sub-domains. There are some recent papers talking about these possible methods, so it

would be of great interest to take them into account. [4]
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Figure 4.2: The effect of the overlapping on the limit of the speed-up

4.1.2 Communication and Synchronization

As said on Chapter 3.3, the routine that performs the communications dates from 1994.

Some improvements have been done since the original code was written but the core of

the routine still remains. When the routine was conceived the objective was to be able

to run the model with few processors instead of a single one, but the possibility to run

the model into several thousands or millions of processors was not on the horizon.

The question of what would happen if they tried to run this model using thousands or

millions of processors was never made and the problems that would emerge from it were

not studied when the routine was developed.
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Here follow some proposals of the answers to the expounded questions: There is a direct

consequence of the method used and the need of synchronisation. The most important

aspect that come from the communication system is the need of synchrony. The need

of synchrony produces that all the processes wait for each other in every single step.

Since the time spent in computation in each processor is not exactly defined (it varies

from one process to another due to some run conditions), the time spent in every step

between communications for all the processes will be equal to the slowest process.

Figure 4.3: Example of the time distribution of the different executions of the same
routine.The x axis show the time in seconds.

Even without technical issues like saturation of the shared resources, this phenomena

will decrease the performance.

The impact that the number of processes has in this effect will be explained straightaway

with two examples. This will illustrate the effect of increasing the number of processes

when synchrony is needed.

In the first example, we have a dice, and we are interested in the expected value of the

maximum when we throw the dice n times.
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The expected value of the maximum when we throw the dice only once is the same as the

expected value of the dice value. But when we throw the dice more times, the expected

value of the maximum increase.

We can calculate the expected value by computing the value of the maximum for all the

possible permutations.

〈maxn〉 =
cn∑
i=1

max(Xi,1...Xi,n)

cn
(4.2)

where c is the number of possible values of the dice and n the times that we throw the

dice.

With a classic dice with 6 faces, the evolution of the expected value of the maximum

when increasing the number of throws is the following:
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Figure 4.4: Expected value for the maximum corresponding to n throws of a dice.
Those values are calculated analytically from the formula 4.2

In the second example, consider random numbers corresponding to a normal distribution

instead of a dice. The evolution here is similar:
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Figure 4.5: Expected value for the maximum of n random numbers that follow a
normal distribution.Those values correspond to computer simulations. With a

confidence interval of 99.9% the confidence interval error is less than 0.02 .

How are these two examples related to the effects of synchronisation is explained below.

If the computation time for a specific routine follows a certain distribution, and there is

only one process or if synchrony is not needed, when we execute this routine n times,

the total time will be close to

time = n · µ (4.3)

where µ is the mean value of the computation time for that routine.

But if we include here the need of synchronisation, the behaviour will be similar to the

previous examples and the total time of the execution would evolve like the expected
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value of the maximum when you have a random number a certain number of times. We

could make an analogy between the maximum value of a set of dice throws with the

maximum value of the execution times for different processors.

The real distribution is neither a normal distribution and of course nor the one of a dice.

Then the behaviour of the real system will be different from those two examples but still

quite similar.

A real case in which there is a need of synchronisation in every small step will be more

complex, since the time distribution of the processes will not be a normal distribution.

This effect could be increased considering that the increment of the needs of communi-

cation can also increase the standard deviation of the time spent on communication.

It could seem that this effect is not so relevant as a logarithmic grow may be acceptable,

but the explanation on this section only shows the evolution of the lower limit of the

wall-clock time in an ideal case. In the real computer model, the time distribution of

some of the routines is highly dependent on the run conditions and the use of shared

resources, and this produces an even bigger increase of the wall-clock time.

In the NEMO code, one of the hypothesis is that the current communication pattern

leads to cascade events that could slow down some of the processes and because the

effect explained in this section increase the global wall-clock time.

Another problem that emerge of synchronisation is that all the processes are using the

same specific shared resource approximately at the same time.

To solve these problems that emerge from communication and the need of synchrony,

first it must be analysed if the synchrony is necessary or if other methods that allow

asynchronous communications can be adopted. There are some algorithms currently

used that need synchronous communications. The most important algorithm used that

require synchronization is the solver, as the algorithm iterates until the overlapped

points converge on all the processes.

If a change from the current method to an asynchronous one was not possible, the

clearer approach to reduce the synchronisation effects would be to reduce the amount

of communications.

When reducing the number of communications implies an increment of the computation

cost, it would be necessary to evaluate if this increase is worthy in order to improve the

scalability of the code.

There are many possibilities to decrease the number of communications. In the current

NEMO code it is possible to use an extra-halo method that allow the solver to decrease
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Figure 4.6: Comparison of limit of efficiency for the classical overlapping and
extra-halo.

the number of communications between the processors by adding an extra-row of shared

points. The effect of this extra-halo on the maximum speed-up and efficiency can be

easily modelled.

As we can see on the figures 4.1 and 4.2 the maximum efficiency and speed-up are even

more constrained because of overlapping.

This kind of approximation can improve the performance of the model when it is con-

strained by the communications and need of synchrony, but if the goal is the possibility

to perform exa-scale executions, discussions about if the loss of efficiency is worth must

be done. Also it is important to discuss if the model can keep working with synchronous
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Figure 4.7: Comparison of limit of the speed-up for the classical overlapping and
extra-halo

communications or if it is better to make the effort to find alternatives to allow asyn-

chronous communications.

There are also other possibilities to decrease the number of communications. The Split-

Explicit free surface algorithm [1] for the solver have shown that the communication

requirements decrease (and in consequence the synchrony requirements) in comparison

to the filtered free surface algorithm[1].
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4.2 Technical Limitations

The main technical limitations in the scalability of the NEMO model are saturation of

the shared resources ( Essentially the network bandwidth and file system access) and

the work unbalance.

As we said before, it is important to know that due to the synchronisation issue, is not

necessary to have a global increase on the time spent in one particular routine to have

a global growth in the global time. i.e. the delay of one process is enough to delay the

whole model.

As the results of the profiling performed on NEMO show, when increasing the num-

ber of processors, there are two types of routines that increase their times much more

than desirable. The routines related with I/O and the routines with a big amount of

communications.

What is important part about the increment of time spent in communications is that

almost all the time is spent in waiting, not in transferring data, and this shows that

the problem may not be caused by the limits of the available bandwidth, but by the

problems related to synchrony and the differences of time spent performing calculations

in different processors.

Since the synchrony problems came from the method used, to improve the scalability

of the model we must focus on the origin of differences between the execution times on

different processors.

These differences proceed from two main origins:

• Work Unbalance

• Running Conditions

and as said before, the reason that these differences are really a problem is:

• Communication and Synchronization

These problems must be solved separately.
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4.2.1 Work Unbalance

When we talk about work unbalance we talk about the differences on the amount of

computation that the different processes have to do.

In the NEMO model most of this work unbalance comes from the nature of the problem

to solve, the LIM2 module and its differences on the work load in different regions of

the earth. For the Sea-Ice , most of the work is placed near the earth poles, while the

tropical zones do not have any work to perform.

To achieve a good efficiency it is necessary to reduce the work unbalance and avoid the

waiting times, otherwise the resources will not be taken full profit of.

To solve this specific problem into NEMO we have two proposals, none of them tested.

The first approach is to uncouple the sea-ice module from the NEMO code and couple

it later using OASIS. It would allow to run specific processors to run the sea-ice model,

and the number of this processors could be adjusted to avoid the work unbalance.

The second possible improvement is modify the geometry of the sub-domains to create

smaller sub-domains where the sea-ice module has more work to do and bigger sub-

domains with no sea-ice work.

This second approach is not possible with the current synchronous communications due

to the impossibility to find concurrency between different modules. i.e. it is not possible

to compensate bigger workloads on one module in another module because then we will

find waiting time due to work unbalance in both modules that will make the performance

worse.

4.2.2 Running Conditions

The use of shared resources could cause that the same task performed by two different

processors or in two different moments takes different times to be completed.

When talking here about shared resources it is referred to both the platforms shared

with other users that could interfere with our job, and to the shared resources with the

other processes (memory access, communication network,...).

In the current implementation of NEMO, several differences were found in the times

spent by the processors in some of the routines, caused by run conditions. These routines

relate to both file access and communication.

2The LIM module is the sea-ice module of NEMO
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4.2.2.1 Input/Output

The problems about I/O were the main bottleneck in the scalability of NEMO until the

new approach of a dedicated processes for writing/reading files was implemented. The

system XIOS[3]3 implemented in the lasts versions of NEMO allows the model to write

outputs at any frequency without compromising the performance.

In this point (July 2014) the system does not allow a parallel approach to access files

and this is still a bottleneck in some routines. The massive access to shared file system

delays some processes and the synchronisation produces a global slowdown.

The server approach (i.e. to have processors dedicated to perform the input/output

operations) has proved to be a good option at generating outputs. It is also expected to

be a good solution to solve the problems with the file access to read files.

4.2.2.2 Communication and Synchronization

The main problem about the communications is that when simulations with a large

number of processors are performed , the time spent in computations becomes smaller

and smaller but the time spent in communications grows , and then this time spent in

communications becomes an important proportion of the total time of the simulation.

This reduces the efficiency, since communication time is not a valuable work. In the

current NEMO version, the time spent in communication plus the time spent in waiting

is bigger than the time spent on useful computation for simulations with more than 144

processors.

As explained before, when the number of processors is increased , the waiting times

produced by the need of the synchronisation also increase. Since this is not related with

the interchange of data itself , it can not be expected to decrease the time involved in

communication and synchronisation.

To minimize the synchronisation issues, the goal must be to maintain the time spent in

every step between communications in each process as equal as possible in all of them.

To do it , it is necessary to take care of the use of shared resources.

One of these shared resources is the network system. The use of synchronous commu-

nication causes that the communication occurs in short pulses, and this makes that the

bandwidth becomes more loaded than desirable.

As an example of this, in one sample execution of the NEMO model running on 1152

processors, it transfers about 7.5 · 1010 bytes in a 5-simulated-days run in about 255

3XML Input Output Server tool developed on the IPSL institute in France
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seconds. This give us a rate of 2.94 · 108 bytes
second , much smaller than the bandwidth

capacity of our network system, that is approximately 4 · 1010 bytes
second . But what really

happens is that all communications are executed in synchrony, in a very narrow time-

space , and that causes that the network throughput becomes much bigger , which could

cause the model to saturate the total bandwidth of the system.

In this section it will only be discussed the possible improvements on the current com-

munications, considering that it can not be changed to an asynchronous paradigm .

The current implementation of the communication system could be causing unnecessary

cascades of events, accentuating even further the fact that the communication occurs in

short pulses.

This, later on, could be also causing important differences in the time spent by dif-

ferent processes to complete every communication step and therefore incrementing the

synchronisation problems.

Technically what can be done to improve communication is to minimize these cascade

events and make the communication process as distributed as possible.

In order to achieve this, three different improvements to the current pattern have been

suggested and a test-application has been developed to compare the performance of the

current pattern with the alternatives proposed to see if the suggested changes to the

communication pattern could improve the model performance.

As proved in chapter 5 , the current communication’s paradigm implemented on NEMO

is far from being optimal and an improvement could be interesting. In this chapter, a

study of different communication patterns is introduced and evaluated.

The interesting conclusions of the communication’s study are the following:

1. The current communication pattern is far from being optimal.

2. It would be easy to implement a better solution on the NEMO code.

In the chapter 5 we have explained and tested the improvements proposed and the results

support the those affirmations.



Chapter 5

Proposal of Communication

Improvement

In this chapter the tests performed with a test-program created to emulate the NEMO

communicate requirements will be explained in order to be able to evaluate if the current

communication pattern can be improved.

In addition to the current pattern, three alternative communication patterns have been

suggested and have been tested it. To perform these experiments with a different num-

bers of processes theMare Nostrum 3 superomputer was used. Its characteristics are

available at the appendix A.
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5.1 Current Pattern

In the current version of NEMO, when the model calls the mpp-lib routine to interchange

data with their neighbours in any routine. The pattern used is explained on the section

3.3. (Figure 3.5)

Since the receiving functions are blocking, the processes cannot receive the message from

West before the message from East. The same happens when the processes communicate

in the north-south direction.

The processes call this function when they finish some computation. It send messages

to East and West, waits for messages from East, and when the message is received

it waits for the message from the West. When this point is reached , almost every

process is waiting until the last process has finished . When the last process finishes the

computation , it triggers a cascade of events from all the processes that were waiting.

It also provokes that all the communications of the second round (north south) start

at the same time. Therefore all the processes send their messages to the north-south

communication in a very short period of time and this could be producing a few moments

of high traffic that could be avoided. This algorithm is far from being optimal. Here

some ideas to improve it will be proposed.

One element that can be relevant is that in the current pattern there is a transmission of

the corner values to the diagonal neighbours. In some routines this could be important

but in the solver it is not important since all the points corresponding to overlapped

areas must converge to the same values. For this reason, it should be studied if the

changes applied to the communication routines could be applied to all the routines or

not. In the second case, it would be still interesting to apply these changes to the solver

as it is the most communication consuming routine.

5.2 Possible Improvements to the Communication Pattern

We propose three possible improvements to the current rountine. The goal of these

improvements is to minimize the time spent on communication without changing how

the model developers use the routine.
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5.2.1 Couple E-W with N-S communication

This possible improvement just consists in coupling the E-W and N-S communication.

It would help to avoid cascade events and therefore avoid a load excessively the network

system.

1. Every process sends a message to the all its neighbours.

2. Waits for a message from the west neighbour.

3. Receives the message from the west.

4. Waits for a message from the east neighbour.

5. Receives the message from the east.

6. Waits for a message from the north neighbour.

7. Receives the message from the north.

8. Waits for a message from the south neighbour.

9. Receives the message from the south.

10. Waits until all the messages have been successfully delivered.

This change in the algorithm avoids the intermediate sending that could be causing

problems.

5.2.2 First In First Out

Another possible improvement could be trying to allow the program to process the

received messages in the same order as they arrive. By processing the already received

messages, even more cascades of events than in the previous algorithm are avoided.

This algorithm also sends the messages to all the neighbours at the beginning of the

routine.

1. Every process sends a message to the all their neighbours.

2. Polls all the neighbours to see if there is a message.

3. Receives the first message to get in.

4. Polls the remaining three neighbours for messages.
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Figure 5.1: Coupled E-W with N-S communication pattern.
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Figure 5.2: First In First Out communication pattern.
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5. Receives the first message to get in.

6. Polls the remaining two neighbours for messages.

7. Receives the first message to get in.

8. Waits for the last message.

9. Receives the last message.

10. Waits until all the messages have been successfully delivered.

The figure 5.2 is the representation of this algorithm. In this figure the order of the

receptions is arbitrary, it will be determined for the order of reception of the messages.

This algorithm also avoids cascades of events and moreover to spend time waiting while

it is possible to process messages that are already available.

5.2.3 Non-blocking receive function.

Another simpler approach that should solve some of the problems that the current

pattern has, is simply to use only non-blocking communications both for sending and

receiving.

The pattern is the following:

Figure 5.3: Non-blocking receive function communication pattern.

1. Every process sends a message to the all their neighbours.

2. Every process starts the non-blocking receiving routine MPI Irecv for all the neigh-

bours.

3. Uses Wait all routine to wait for all communications to end.
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We could expect to have better results with this approach but the results show that in

some cases it is slower that the other approaches.

As we do not know exactly how this MPI functions work, we do not know the causes of

this results.

5.3 Results

The results corresponding to this section are from a test program developed in C lan-

guage to simulate the same comunication scheme that occurs in the NEMO model. In

order to test and compare the performance of the four different algorithms some exper-

iments were done using the four algorithms for a different number of processors.

In the first row of tests the non-blocking receive function algorithm was not tested. Later

on we also tested the non-blocking receive function algorithm and considered that the

plot of the time’s distribution would give more information than the simple mean and

deviation, since the distribution plays a relevant role on the behaviour of the system.

Figure 5.4: Evolution of waiting time for different patterns.
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Figure 5.5: Waiting time distributions for a run with 128 processors

Figure 5.6: Waiting time distributions for a run with 256 processors
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Figure 5.7: Waiting time distributions for a run with 512 processors

Figure 5.8: Waiting time distributions for a run with 1024 processors
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Figure 5.9: Waiting time distributions for a run with 2048 processors

Figure 5.10: Waiting time distributions for a run with 4096 processors
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Figure 5.11: Waiting time distributions for a run with 8192 processors

The following graphics show the time spent waiting for each processor to receive the

messages of its neighbours. In the first plot (Figure 5.4, the number of messages is

100.000 and the size of the messages corresponds to 1000 byte. This quantities are

similar to the number of messages of 5 simulated days (120 time step) of NEMO. On

the distribution plots, the number of messages is 2.000 and the size of the messages is

also 250 floats. The rest of the figures (Figures 5.5, 5.6, 5.7, 5.8, 5.9, 5.10 and 5.11) are

the histograms of the simulations of 2.000 messages with a size of 1000 bytes.



Chapter 6

Conclusions and Open Lines

In this chapter the conclusions of the thesis are briefly exposed and the main Open Lines

are enumerated.

6.1 Conclusions

To face the possibility of executing the NEMO model with the modern HPC’s with

thousands or even millions of processors, some changes can not be done by just adapting

and modifying the old code and it is necessary to rethink some important elements.

This thesis show that it is important for further developements to discuss two possi-

bilities. If it is sustainable to maintain only one synchronous communication routine,

used by all the model routines, or if it is possible to allow asynchronous communication,

even though only on some parts of the model. It is also necessary to be aware of the

improvements done in algorithms for massive parallel applications as the problems of

NEMO probably are shared with other applications.

This work also show that the current technical limitations of the model can be reduced

to improve the efficiency with some hundreds or even few thousands of processors. The

profilings show that some of these limitations are the file access and how the communi-

cations are taking place.

As it is explained in this thesis, the need of synchronous communication itself is a big

issue in the current NEMO application. Moreover, how the communication routine is

implemented also degrades the performance, as it requires even more synchrony than the

demanded by the algorithms. To solve this, a few improvements in the communication

pattern were studied.
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The results of this study are promising and effort should be done in order to apply the

changes into the NEMO code.

6.2 Open Lines

The main Open Line that follow this thesis is the application of a different communica-

tion pattern into the NEMO code. Some people involved in NEMO’s developement have

shown interest in the results of this thesis and have encouraged the inclusion of these

changes into the code. As it is shown in the last document delivered from the NEMO

community, the “NEMO’s development strategy” released on June 2014, the efficiency

and performance of the NEMO model is really a matter of interest for developers and

users.

Each of the elements identified as a possible bottlenecks of the model can be more deeply

studied.



Appendix A

HPC Platforms

During this thesis, all the tests and executions were performed in two different HPC’s:

1. Ithaca

2. MareNostrum3

A.1 Ithaca

The Ithaca HPC is a small cluster located at the Catalan Institute for Climate Sciences

(IC3) and it’s characteristics are the following:

A.1.1 Hardware

• Nodes and cores: 48 homogeneous nodes (384 cores)

• Motherboard: Sun Blade X6270 servers

• Processor: Dual Quad-Core Intel Xeon 5570(2.93 GHz)

• Main memory: 8 GB per node

• Interconnect: Infiniband (IB) and Gigabit Ethernet

• Scratch storage: 7 TB of Sun storage J4200

• Permanent storage: 48 TB of Sun FIRE X4500 network-attached storage

• Additional permanent storage: 97 TB of Sun StorageTek SL500
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A.1.2 Software

• Operating System: SUSE Linux Enterprise Server 11 (x86 64)

• Queue Scheduler: OGS/GE 2011.11

• Compiler(s): GNU v4.3.4, Intel v13.0.1

• MPI(s): OpenMPI v1.6, IntelMPI v4.0.3

A.2 MareNostrum3

The MareNostrum3 HPC is a supercomputer located at the BSC center at UPC north

campus in Barcelona. (IC3) and it’s characteristics are the following:

A.2.1 Hardware

• Nodes and cores: 36 supernodes iDataPlex with 84 nodes each one. Each node

with 2 8-core proccessor card (48384 processors into 3024 nodes)

• Motherboard: IBM dx360 M4

• Processor:Intel SandyBridge-EP E5-2670 (2.6 GHz)

• Main memory: 32 GB per node, 2GB per processor

• Interconnect: Infiniband (IB) and Gigabit Ethernet

A.2.2 Software

• Operating System: Linux - SuSe Distribution 11 SP2

• Queue Scheduler: LSF v9.1

• Compiler(s): GNU v4.3.4, Intel v13.0.1

• MPI(s): OpenMPI v1.5.4, IntelMPI v4.1.0
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