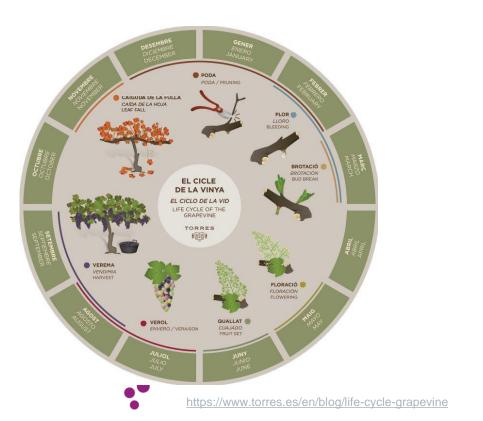

Climate Services for Vineyard Adaptation

Thursday 23 March, 2023 Climate Europe 2 Webstival

Núria Pérez-Zanón Postdoctoral Researcher Barcelona Supercomputing Center (BSC) nuria.perez@bsc.es


VITIGEOSS ®

Why to provide weather and Climate Intelligent Service for viticulture?

The Brussels Times

Disappointing global wine production predicted for 2022

Thursday, 3 November 2022

Global wine production, hit hard by climate change events

Successive heat waves and drought have led to poor harvest of many fruits and vegetables, including grapes.

https://www.brusselstimes.com/316567/disappointing-global-wine-production-predicted-for-2022

Which weather or climate forecast helps the most on a decission?

Weather forecast	O. de	Climate predictions		Climate projections	
Trouting foregaet	Sub- seasonal	Seasonal	Decadal		
1-15 days	10-60 days	1-15 months	2-30 years	20-100 years	
			Siting, choice of scion variety and rootstock.		
		Assess	Assessment of water needs		
		Grow cycle management			
Pathogen pressure, abiotic stresses					
		Crop forcing			
Productivity, quality		Wine style		е	
Harvest date and duration					

Adapted from: Antonio Graça, SOGRAPE VINHOS SA, 2014

Time

vitiGEOSS Weather and Climate Intelligent Service

Weather forecasts (3 days)

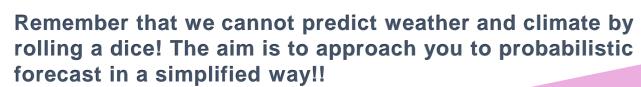
MONARCH

- Sub-seasonal climate forecasts (4 weeks)
 NCEP-CFSv2
- Seasonal climate forecasts (3 months)
 ECMWF SEAS5

Target regions (vineyard plots of wine producers in the project):

- Campania region (MASTROBERARDINO)
- Douro Valley (SYMINGTON)
- Catalonia (TORRES)

Help us to create a forecast!



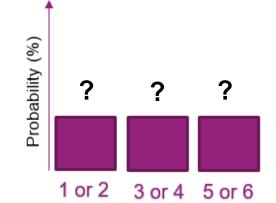
We will think on a rolling dice and ...
do a translation to climate language

To do it, we will consider the results of a dice by groups:

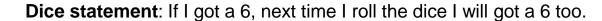
- 1 or 2 → colder than usual
- 3 or 4 → temperatures as usual
- $5 \text{ or } 6 \rightarrow \text{hotter than usual}$

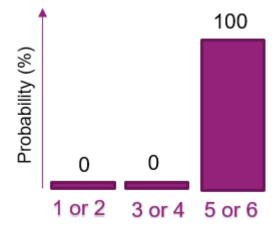
THE CONVERSATION

If you want to roll the climate dice, you should know the odds



3 or 4: as usual

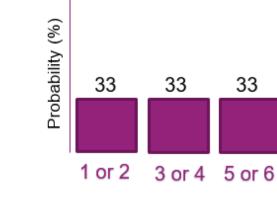



Persistence

Climate statement: If the weather doesn't change, it will remain the same.

1 or 2: colder than usual

3 or 4: as usual


Experience

33

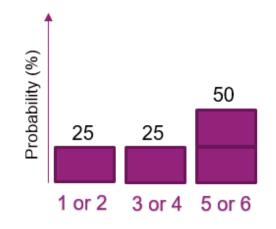
33

Dice statement: I have roll it thousands of times, and all results occurs the same number of times.

Climate statement: Given past experience, we can know the climate averages (climatology)

1 or 2: colder than usual

3 or 4: as usual



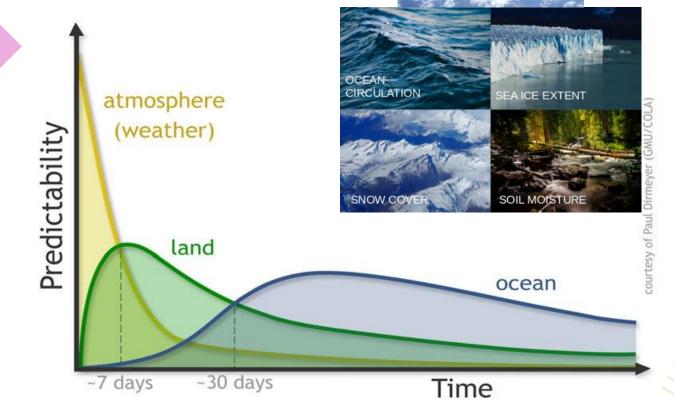
Modelling

Dice statement: After rolling it millions of times, I found that there are differences in my dice!

Climate statement: I know components of the climate system and how they interact, let's built a model

3 or 4: as usual

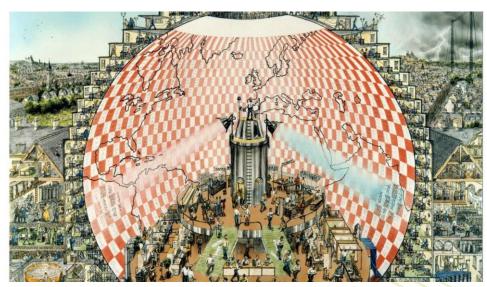
Let's talk about modelling!



Earth Climate System Components

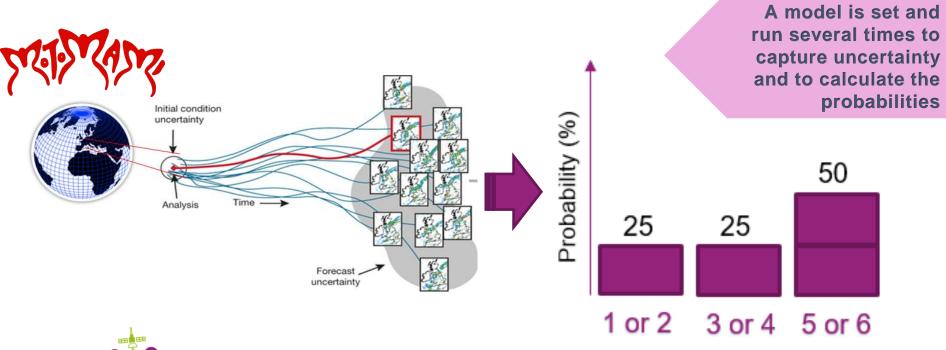
We know the components

Seasonal and subseasonal climate predictions

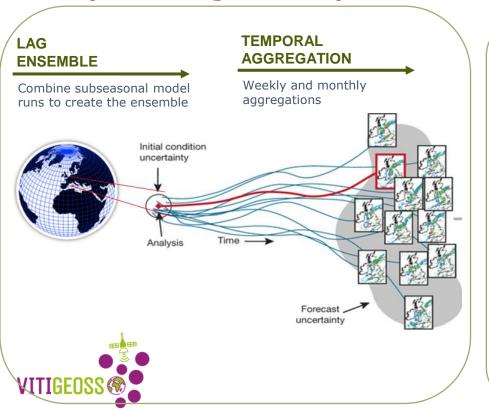

We know the equations although ...

The atmosphere is **a chaotic system**. Small errors in the initial conditions of a forecast grow rapidly, and affect predictability. Furthermore, predictability is limited by model errors due to the approximate simulation of atmospheric processes of the state of- the-art numerical models.

Read more: https://www.ecmwf.int/en/elibrary/79859-chaos-and-weather-prediction

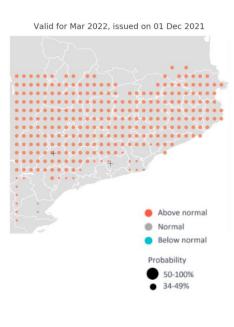

Stephen Conlin, 1986; based on the description of .F. Richardson, 1922

VITIGEOSS §


Seasonal and subseasonal climate predictions

Post-processing climate predictions

DOWNSCALING


Increase spatial resolution correct for local effects

BIAS ADJUSTMENT

Remove systematic biases and adjust members spread

QUALITY ASSESSMENT

Skill scores

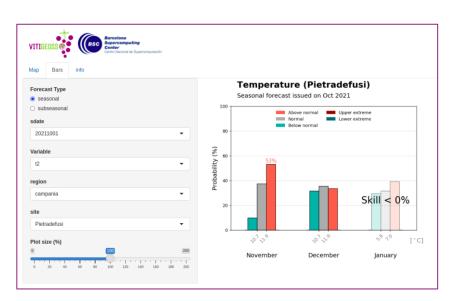
Co-design approach

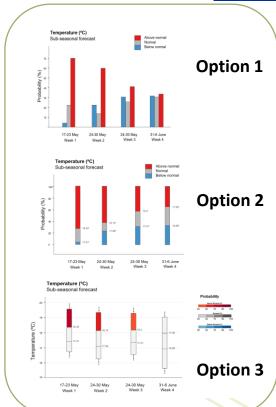
Co-production of services & products for a more resilient society

User engagement

Science communication/dissemination

BSC, Knowledge Integration Team, 2022





Co-design approach for probabilistic forecast

- Outlooks (PDF documents)
- Shiny App (web interface)
- Mock-ups

Weather and Climate Inteligent Services: the outputs


The services are being updated in the THREDDS catalog with different frequencies:

- <u>Daily</u> Weather forecast
- Weekly Subseasonal climate forecast
- <u>Monthly</u> Seasonal climate forecast

Subseasonal					
Variable name	Variable description	Units			
t2	temperature 2m weekly average	°C			
acprec	accumulated precipitation	mm/week			
rswin	shortwave radiation at ground	W/m ²			
Forecast probabilities for each variable:					
Variable name	Variable description	Units			
prob_bn	probabilty below normal category	%			
prob_n	probability normal category	%			
prob_an	probability above normal category	%			
prob_bp10	Probability below extreme category	%			
prob_ap90	Probability above extreme category	%			
Category limits for each variable:					
Variable name	Variable description	Units			
p33	Lower tercile	var units			
p66	Upper tercile	var units			
p10	Lower extreme	var units			
p90	Upper extreme	var units			
Skill measure for each variable:					
Variable name	Variable description	Units			
rpss	Terciles skill score (Fair Ranked Probability Skill Score)	%			
bsp10	Lower extreme skill score (Fair Brier Skill Score)	%			
bsp90	Upper extreme skill score (Fair Brier Skill Score)	%			

Total precipitation (Santa Gre)

Subseasonal forecast issued on 31 Mar 2022

Other vitiGEOSS Inteligent Services making use of the Weather and Climate Service

Disease management system

provides short-term and sub-seasonal term forecast of disease risk

Phenological monitoring

includes phenological status prediction at sub-seasonal time scale

Crop water demand

also makes use of the short-term predictions to provide predictions on the crop status

Thanks for your attention!

