Direct radiative effect of an intense Mediterranean desert dust outbreak,
based on NMMB/BSC-Dust model simulations: the case of 2 August 2012
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In summer, the western parts of the broader Mean value (40Dse) Study period: 1 March 2000 - 28 February 2013 piiwrw sw ve st o weieaesesesnese M The NMMB/BSC-Dust contains a dust module which is | The direct radiative effects (DREs) in the Earth-
Mediterranean basin are frequent.ly affected by | Satellite domain; 11° W - 39° E, 290 N - 470 N polly N embedded online within the NCEP . Non-hydrostatic Atmosphere system are calculated based on the
intense desert dust outbreaks (Moulin et al., 1998). O m— s Satellite sensors: MODIS-Terra/Aqua (C051), Earth g o =~ WM Multiscale Model (NMMB). Thanks to its unified non- W following formulas:

Massive dust loads, originating mainly in the western Strong acrosol episodes Extreme acrosol episodes Probe - TOMS. OMI - A £ S . hydrostatic dynamical core it is able to provide weather and

Sahara Desert, are transported under the prevalence | ' robe - , DV - Alld : " e inenCaNeE. , % -« W dust forecasts, from regional to global scales. The dust cycle @ 1. Top of Atmosphere (TOA)

of a southwestern airflow at 700hPa resulting from Anastcom expovent @ Temporal resolution: Daily retrievals e 7 T UV UL W is represented through several parameterizations describing DREn. — Fl g

the combination of low (western Sahara) and high oY Spatial resolution: 1° x 1°, 10km x 10km Loigitada dust particles' sources, emissions, transport, removal from 104 = TTOARADOEE — “TOARADON

Effective Radius (r.g)

the atmosphere (wet and dry deposition) as well as the Wi 2.Into the Atmosphere (ATMAB)

interaction with the radiation (Pérez et al., 2011). After a DRE prmap = Farmas.rapon — Farmapraporr
10-day spin-up period, model outputs every three hours for a
168h (7 days) forecasting period, for our case starting from

(Europe) pressure systems (Gkikas et al., 2014).
Considering the high concentrations and the strong
absorption efficiency of dust particles, it is expected
that they will exert a significant perturbation of the

3. Downwelling radiation at surface (SURF)

Earth - Atmosphere system's radiation budget, since Selection of desert dust outbreaks 00 UTC of 2nd August 2012, using 1° x 1o NCEP final DREsyrr = Fiyrrravon — FSurr ravorr

they interact both with the shortwave and longwave analyses (FNL) as initial and 6-h boundary conditions, are o

radiation. This interaction is made through direct, i MODIS-Terra Desert dust (DD) episodes are identified in has been recorded. Then, the days where the W selected. The simulation domain covers the largest part of 4. Absorbed radiation at surface (NETSURF)

semi-direct and indirect processes. In the present fl§ *4OD at 550nm (Land and Sea) each 1° x 1° geographical cell of the overall number of DD episodes is lower than @ Europe as well as the northern African and Arabian DREngrsurr = Fngrsure.ranon — Fnetsurr.ranorr

analysis, we are making use of satellite observations *Angstrom exponent (Land and Sea) Mediterranean domain based on an objective 30 (Gkikas et al., 2014) are masked out. The @ Peninsula deserts, at 0.25° x 0.25° spatial resolution and for ON: dust-radiation int <

and modelling simulations in order to investigate the *Fine Fraction (Land and Sea) and dynamic algorithm, which is depicted in remaining days are sorted based on their @ 40 hybrid sigma pressure levels up to 50hPa. Here, it is used RADOFF' us (glra 1d ldo.n mterac 1ont.

direct radiative effects (DREs) induced by an intense * Effective radius (Sea) the flowchart (Gkikas et al., 2013). According mean regional AODs.,, . and finally 20 days of [ the operational version of the NMMB/BSC-Dust model RAD : 1o dust-radiation interaction

desert dust outbreak that affected the southern parts to its outputs, for each day over the period the most intense dust outbreaks constitute the @ contributing to the first WMO Regional Meteorological ... 4 : :

of the Iberian Peninsula on 2rd August 2012. EP-TOMS & OMI-Aura 1/3/2000-28/2/2013 it is calculated the final dataset. In the present analysis, the case l Center specialized in Atmospheric Sand and Dust Forecast, Posﬁrye DEEES d.lndlcate i warming  while
* Aerosol Index (Land and Sea) number of grid cells in which a DD episode of 2rd August 2012 is studied. the Barcelona Dust Forecast Center  (BDFC; [ "84tV S Indicate cooling.

http://dust.aemet.es).
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Regional DREs
The geographical distributions of dust AODcc,..,, Peninsula and the western Mediterranean Sea. radiation by dust particles at noon (DRE,;,s up surface during daytime and nighttime,

NET (SW + LW) ShOI'tWﬂVC (SW) LOIIgW&VC (LW) DRE;os, DREsryvaps DREcyrp DREcurener @nd the AODs are maximized (up to 3) near to the source to 185 Wm2) whereas there is a very good respectively. The reduction of the net surface
impact on air temperature at 2 meters, based on areas while considerably high values are recorded agreement between DRE,,; and dust AOD radiation can reach up to 300 Wm=2 while the
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gk KA VEET 0T eV w b T T e T Ty to model simulations, the dust storm originates Islands at +12h and +18h while during atmosphere, are found at the surface. More surface temperature by up to 4° C during daytime
Sy fob N RETR R «M 2 SUR I N I I L e across the northwestern parts of the Sahara while nighttime DRE;,, values are almost zero in the specifically mineral particles reduce (cooling while an increase of about the same magnitude it
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*A desert dust outbreak that took place at Wm2 and 300 Wm=2, respectively, and an 2_826_3 _____ BEREEREEEEERE T simulation domain, are investigated. To this aim,
2nd August 2012 affected the western Sahara, atmospheric warming by up 185 Wm-2. e T O O U O O U - three configurations are used in the NMMB: (i) dust At the last part of the analysis, are investigated evident that the model reproduces better the
the Canary Islands and the southern parts of *On a mean regional scale (simulation Somla o W is dynamically calculated and interacts with the possible improvements of the model's maximum (lower RMSEs) than the minimum
the Iberian Peninsula. domain), the mnet DRE;p,, DREjpypag, E I N IR Y radiation (BSC), (ii) GOCART dust climatology (year forecasting accuracy when dust radiative effects (higher RMSEs) temperatures. Moreover, the
*The desert dust outbreak has been DREygTsurs and DREgrr can reach up to -10 = § ' ‘ d - i 2000) is used and dUSt-I:E.I.dlathIl 1nteract1(.)n. 1S are considered in the numerical simulations. In performance of the model versus ERA-Interim
identified based on an objective and dynamic Wm-2, 30 Wm2, -28 Wm?2 and -40 Wm?2, L'_; el im0k I W W actvated (CLIM) and (i) no dust-radiation order to address this issue, the 6-h forecast is better for the minimum temperatures while
algorithm, which uses as inputs a group of respectively. 2 00 n W dly |interaction (RADOFF). The emissions' aggregation is outputs of the temperature at 2 meters, based against FNL a better agreement is found for the
daily satellite retrievals provided at 1°x1° eReverse but substantially lower DREs are §°'”°‘§““ i m - made for each of the 8 bins (r.=0.15, 0.25, 0.45, on the three model configurations (BSC, CLIM maximum ones. The most important finding
spatial resolution. found dllI'iIlg nighttime and for the IW 0-358 il ‘ T || 0.78, 132,224, 3.80 and 7.11 ,L,Lm) used in the and RADOFF), are Compared against the from these preliminary results, is the decrease
*According to fine resolution (10km x radiation. 0005 o 1537 39 51 63 75 87 99 1123135147150 MNOdel's emission scheme (Haustein et al., 2012). corresponding reanalyses data provided by of the RMSE values, particularly for BSC
10km) MODIS observations, AOD and r. °In the dust affected areas, the temperature Forecast hours since 02-Aug-2012 00UuTC Among the three simulations, it is evident that dust ERA-Interim and FNL databases at 0.25°x0.25° simulation, during nighttime indicating thus an
reached up to 3 and 1.5 um, respectively, at 2 meters can be decreased by 4° C during ___ _  __ _____ emissions are maximized during midday while their and 1loxlo spatial resolution, respectively. At improvement of the model's forecasting
while alpha values were decreased down to midday while an increase of the same == Bn2 BN B4 EEN Bin6 = ens| MAJOr poOrtion comes frpm bins 5 6 and 7. each forecast step, it is calculated the root efficiency, when dust radiative effects are
-0.16, indicating the existence of coarse dust magnitude is recorded during nighttime. gk I L R R R A A : Nevertheless, the dust emissions are lower for BSC mean square error (RMSE) between model included in the simulations. This has been also
particles. *Negative feedbacks on dust emissions and o S U S A S | [ compared to CLIM and even lower compared to outputs and reanalysis data for a sub-domain pointed out by Pérez et al., (2006) who
*DREs have been estimated based on mean regional dust AOD are found when By S """ T B R | RADOFE This results in a negative feedback when that comprises the arc shaped dust plume. conducted a similar analysis but for the mean

NMMC]13/2B88%-D2%sir2model simulations for the dust 1radiative effects are considered in the % S 2d2np ----- a1 R R B | B dust 1rad1at1ve elffe}ets arelcon51dered in the rlllumencal According to the comparison results, it is sea level pressure.
period 2-8/8/ : simulations. 8 1768 ----- = = = ~ 4+ simulations which is also apparent in the mean
*At a local scale, during midday, for the net *The consideration of dust radiative effects @ el el regional dust AOD timeseries. The positive
radiation, it is estimat%d an instantaneous improves the ability of the model to = § roeal I ..... N & W differences between RADOFE-BSC are increasing with Acknowlec gements
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