Ensemble of Sea Ice Initial Conditions for Interannual Climate Predictions

Virginie Guemas^(1,2), Francisco J. Doblas-Reyes^(1,3), Kristian Mogensen⁽⁴⁾, Yongming Tang⁽⁴⁾, Sarah Keeley⁽⁴⁾

(1) Institut Català de Ciències del Clima, (2) Centre National de Recherches Météorologiques, (3) Institució Catalana de Recerca I Estudis Avançats, (4) European Center for Medium Range Weather Forecasts

A – Sea Ice Predictability

- > Sea ice area persistence 2-5 months
- Re-emergence up the 15 months (Blanchard-Wrigglesworth et al, 2011) : summer-to-summer (memory in the thickness), winter-to-spring (memory in the SST)
- Summer Arctic sea ice thickness precursor of winter sea ice extent (Chevallier and Salas-Melia, 2012)

Potential for interannual sea ice predictions if sea ice volume properly initialized

B – Issue : Observational coverage

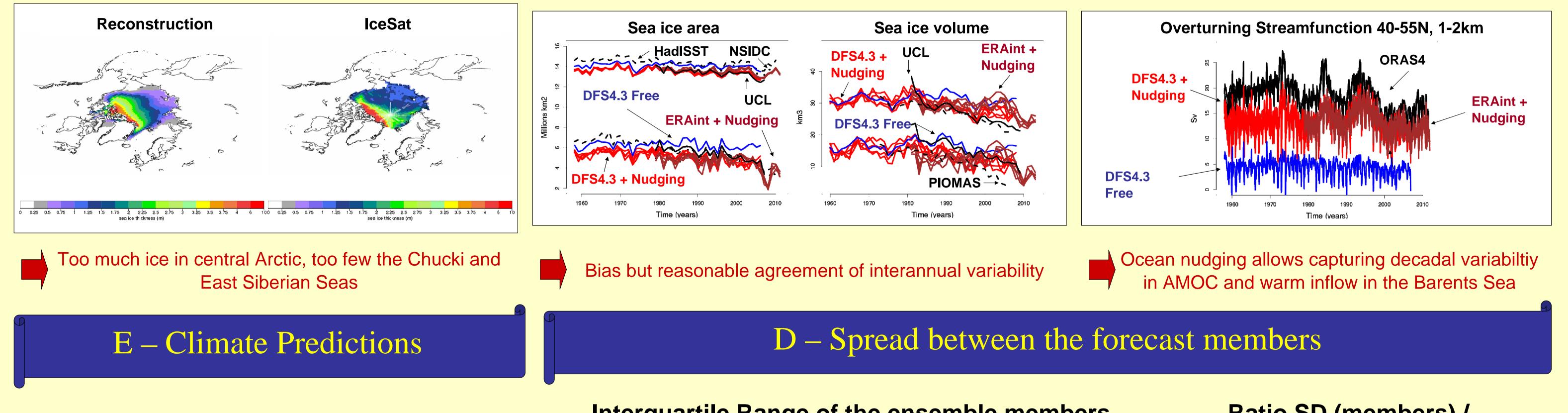
> Before 1973 :

- Arctic : monthly sea ice extent estimates
- Antarctic : climatologies 1929-1937 & 1947-1962
- From 1973 : quasi weekly estimates of sea ice concentration, US Navy, Canadian, Danish aerial reconnaissance
- From 1978 : 2-day frequency later daily, gridded, 1°, satellite microwave imagery
- First sea ice thickness dataset in 2010 : submarine, ULS
- Need for sea ice reconstruction for 1960-present (CMIP5 target for prediction exercise)

C – Sea Ice Reconstructions

NEMO3.2 ocean model + LIM2 sea ice model

- Forcings : 1958-2006 DFS4.3 or 1979-2010 ERA-interim
- Nudging : T and S toward ORAS4, timescales = 360 days below 800m, and 10 days above except in the mixed layer, except at the equator (1°S-1°N), SST & SSS restoring (-40W/m2, -150 mm/day/psu)
- Wind perturbations + 5-member ORAS4 - > 5 members for sea ice reconstruction


5-member sea ice reconstruction for 1958-2012

D – Validation of the 5-member sea ice reconstruction

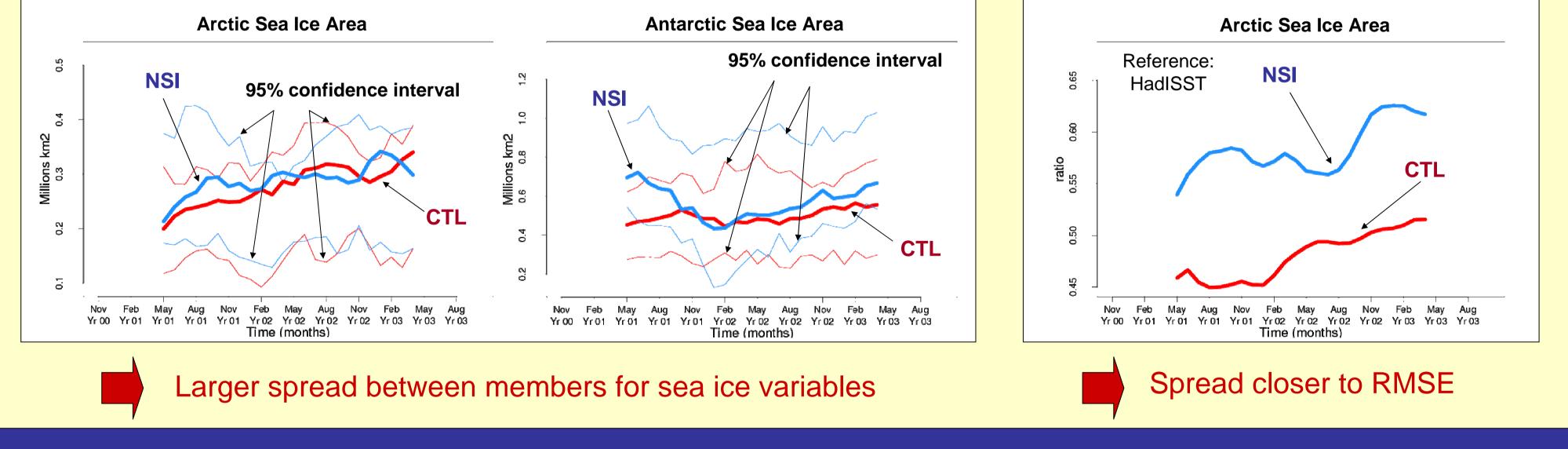
October-November Arctic sea thickness

March and September Arctic sea ice

Atlantic Meridional Overturning Circulation

Ec-Earth 2.3 ocean-atmosphere coupled climate model

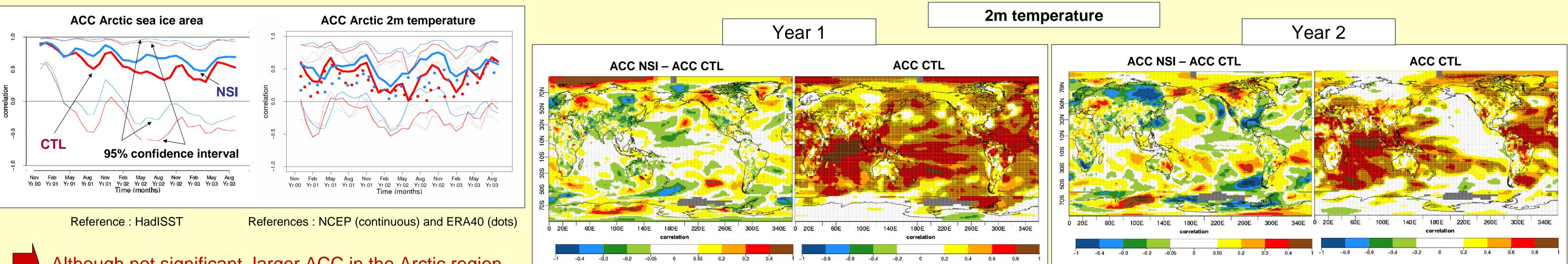
Interguartile Range of the ensemble members around the ensemble-mean


Ratio SD (members) / **RMSE (ensemble-mean)**

> Initialization every 2 years from 1960 to 2004 + 1965 + 1975 + 1985 + 1995 + 2005 on 1 November = 28 forecasts

Ocean from ORAS4, Atmosphere from ERA40/ERAInt, Sea ice from our 5-member reconstruction, full-field initialization

Sensitivity experiment with New Sea Ice initial conditions = **NSI** is compared to previous CMIP5 contribution = CTL initialized from a NEMO2-LIM2 simulation forced by DFS4.3


Assessment of the benefits from using our new sea ice initial conditions by comparing NSI to CTL

E – Forecast quality

Improved forecast skill in the Arctic

Improvement confined to the Arctic

Although not significant, larger ACC in the Arctic region

Reference : ERSST over seas + GHCN over land except poleward of 60° GISTEMP

Conclusions

5-member Sea Ice Reconstruction:

• Too much sea ice in the central Arctic, too few in the Chucki and East Siberian Seas

Reasonable agreement of the Arctic sea ice interannual variability with NSIDC and HadISST

Climate predictions initialized from this 5-member reconstruction:

• The spread between members is larger for sea ice variables, thus more representative of the forecast error

• Although the differences are not significant, the ACC is increased for Arctic sea ice area and 2m temperature

• The increase in ACC for 2m temperature is confined to the Arctic

Nothing significant but improvement all over the Arctic

References :

Guemas V., Doblas-Reyes F., Mogensen K., Tang Y., Keeley S., 2013, Ensemble of sea ice initial conditions for interannual climate predictions, submitted to Climate Dynamics.

Chevallier M., Salas-Mélia D., 2011, The role of sea ice thickness distribution in the arctic sea ice potential predictability: a diagnostic approach with a coupled GCM. J Clim 25:3025-3038, DOI 10.1175/JCLI-D-11-00209.1.

Blanchard-Wrigglesworth E., Armour K.C., Bitz C.M., DeWeaver E., 2011a, Persistence and Inherent Predictability of Arctic Sea Ice in a GCM Ensemble and Observations. J Clim 24:231–250.

Blanchard-Wrigglesworth E., Bitz C.M., Holland M.M., 2011b, Influence of initial conditions and climate forcing on predicting Arctic sea ice. Geophys. Res. Let. 38(L18503), DOI 10.1029/2011GL048807.