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Ein Vergleich mehrerer Methoden zur Initialisierung von saisonalen bis dekadis-
chen Klimavor hersagen:

Full Field (FFI) und Anomaly Initialisation (Al) sind zwei Bthoden, die zur Initial-
isierung von saisonalen bis dekadischen Klimavorhersagrgesetzt werden. FFI ini-
tialisiert das Modell anhand der Beobachtungen. Das hdtaige, dass die Trajektorien
zum Attraktor hin abdriften. Al initialisiert das Modell hand der beobachteten Anoma-
lien, um Drift zu vermeiden. Wir vergleichen beide Methodamter verschiedenen
Szenarien fehlerbehafteter Beobachtungen und Modellem3eAlem analysieren wir
zwei weiterfihrende Methoden. Least Squares Initiatisafl S1) propagiert Beobach-
tungsinformation partiell initialisierter Systeme in wubachtete R&ume des Modells
anhand der Kovarianzen der Modellanomalien. ExploringRheameters Uncertainty
(EPU) dient der Korrektur des Drifts wahrend des Modelkauf

Unseren Untersuchungen liegt ein einfaches Klimamodeifunde. Ergebnisse zeigen,
dass bessere Beobachtungen die VorhersagegenauigkefRloerhohen. Dagegen
hangt die Vorhersagegenauigkeit von Al von Modellverbessgen ab. Eine erfol-
greiche Annaherung des Modellattraktors mit Hilfe von Alnsir dann gewahrleistet,
wenn sich die Wahrscheinlichkeitsdichtefunktionen desd#is und des Klimas sich
lediglich um die erste Ordnung unterscheiden. Signifik&ieerschiede hoherer Ord-
nung kénnen dazu fuhren, dass die Verteilung der Anfangsbedgen weniger mit der
Wahrscheinlichkeitsdichtefunktion des Modells Uberéinst, mit einer verringerten
Vorhersagegenauigkeit zur Folge. LSI und EPU fuhren zu myseverbesserungen, die
zum Einsatz in Modellen héherer Komplexitat ermutigen.

A comparison of techniquesfor theinitialisation of seasonal-to-decadal climate pre-
diction:

Full Field (FFI) and Anomaly Initialisation (Al) are two semes used to initialise
seasonal-to-decadal climate prediction. FFI initialifes model on the observations,
but trajectories drift towards the model's own attractor.aAsimilates the observational
anomalies onto the mean of the model climate with the imentif avoiding drift. We
compare both approaches unddfetient circumstances of observational and model er-
rors. We also analyse two advanced schemes. Least Squdiass#tion (LSI) prop-
agates observational information of partially initiatiseystems to the whole domain
using the covariance of the model anomalies. Exploring thereters Uncertainty
(EPU) is a drift correction technique applied during thesfast run.

Experiments are carried out using an idealized coupledrdigsa Results suggest that
an improvement of FFI necessitates refinements in the odisemg, whereas improve-
ments in Al are subject to model advances. A successful appation of the model
attractor using Al is guaranteed only when thé&ealiences between model and nature
PDFs are limited to the first order. Significant higher ordéliedences leads to an initial
conditions distribution that is less representative ofrttuelel PDF, resulting in degrada-
tion of skill. Both LSl and EPU lead to significantly improvskill scores, encouraging
implementation in models of higher complexity.
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1 Introduction

The 20" century witnessed the emergence of the field of climate seiémat has entered
the public consciousness and spawned widespread politetzdte like no other. Pio-
neering work, to name only a few, covers the explanation @f&arth’s glacial cycles by
Milankovich [1941]; the idea of a global ocean conveyor belt Byoecker[1991]; the
link between CFCs and the ozone hole3xlomonet al.[1984; and the use of ice cores
to reconstruct past climates, e.dhompson[200J. After the discovery of the green-
house &ect by Fourier in 1824, and first studies by Arrhenius conogrthe influence

of carbondioxide on surface temperatures in 1896, greesehgases (GHGs) have been
identified as a driver of climate changei¢rrehnumbert201Q, and the &ect to which
our planet will be impacted by cumulative anthropogenicssmoins is an urgent ques-
tion. Plass[1954 predicted that the planet would be aboutClwarmer in 2000 than in
1900 (PCC[2013 estimate: between.65— 1.06°C over 1880-2012), and early reports
about the #ects of CO, on climate were addressed to the American National Academy
of Sciences byCharneyet al. [1979. Combustion processes are a central pillar of to-
day’s economy; systematic measurements of ri€l levels in the atmosphere were
undertaken by Keeling after 1958¢eling et al., 2009. The economic cost of sealing
emissions is weighed against likely future impacts on dema@long with observations
of the Earth’s response to anthropogenic GHG forcing, otexh is inherently a central
tool of the discussion.

Climate models today synthesize knowledge acquired frawliess of the Earth’s climate
system. The use of climate models in research on carbonddi@ad climate began in
the 1970s, and largely improved in the wake of increasingpdational power, cou-
pling of additional components, and increasing model rggm and complexity. The
implementation of such models in centurial climate progetw have simulated a warm-
ing response towards GHGs, the strength of which is depérmuatetihe future emissions
scenario Hawkins and Suttor2009. The uncertainties of such predictions are derived
from the scenario uncertainty, and model deficienditskins and Suttor2009.

Climate prediction on shorter time scales has recently héggplay a larger roleNleehl

et al, 2009. In the context okclimate servicesseasonal-to-decadal (s2d) prediction has
received a lot of attention. Much like numerical weatherdmton (NWP), the idea be-
hind climate services is to build institutions that providirmation to the society about
how the climate is expected to change within the near fukodhat adaptive measures
and planning can take place. However, such a shift towardsatipnal climate fore-
casting bares a new set of demands that need to be met. Theuifstdemand is that
s2d models can reproduce seasonal-to-decadal climatbilayi patterns with sfiicient
skill. Although climate models used for centural projensalisplay decadal variability, it
has previously not been the goal of models to predict sudenat which were averaged

11



12 Chapter 1. Introduction

out through multiple runsHaineset al,, 2009. The second central demand posed by cli-
mate services igegionalprediction skill, the lack of which will severely limit anyesvice

to a country or other stakeholder. Inferences from certpr@ections have trusted only
global mean averages; too large have been the model-redat@d with respect to, for
example, the Atlantic meridional overturning circulatifMOC), to dare any regional
assessments. Seasonal and decadal variability pattesingsuhe El Nifio Southern Os-
cillation (ENSO) have regional character, so that both detsare connected, and depen-
dent on how well the model performs. This is by no means ols;iblWP relies perhaps
more heavily on observations and initialisation, whereasturial projections are more
strongly dependent on the scenario uncertaiRigvjkins and Suttor2009.

Model-related uncertainties aside, predicting so catéernal variability [Hawkins and
Sutton 2009 will require the incorporation of knowledge with regardsthe state of to-
day'’s climate. If, first-of-all, variability patterns exjsecondly, they are predictable; then
thirdly, we need to synchronize our simulated climate wité tbserved pattern. Points
one and two have been observationalffrened; the third must be achieved through a
correctinitialisation of the system. Furthermore, besides a tracking of the \tiab
using observations to initialise forecasts can correctfiteo-date response to GHG forc-
ing [Lee et al, 2009. Previous centurial projections using climate modelsehbeen
initialised from randomly selected preindustrial statee¢hl et al., 2009, neglecting
observations on the grounds that initial condition sigrets lost on such time scales.
S2d prediction therefore calls for schemes to initialiggptions. Full Field Initialisation
(FFI) incorporates observations, wherever availablesatliy into the model. However,
due to the unavoidable presence of model deficiencies,dsteexperience a drift from
the observations towards the climate of the model, nedgtaféecting prediction skill
[Magnussoret al, 2013. Furthermore, initial conditions inconsistent with theodel
climate can lead to rapid re-adjustments known as iniaib® shocks, resulting in short-
term loss of skill. Anomaly Initialisation (Al) assimilad@®nly the observed anomalies on
an estimate of the model mean climate. It has been devisédhatgoal of overcoming
initialisation shocks, as well as model drift, by initiaig the model closer to its own
attractor Bmith et al,, 2007. Comprehensive comparisons of FFI and Al on s2d time
scales using state-of-the-art coupled climate models resently appearedfagnusson
et al, 2012 Smithet al, 2013 Hazelegeet al,, 2013. Results have indicated improved
skill after initialisation at the seasonal time scale, veitslightly better skill for FFI Mag-
nussoret al, 2012 Smithet al, 2013. On the decadal scale, studies have shown skill
either in favor of Al [Smithet al, 2013 or FFI [Hazelegeet al,, 2013.

State estimation theory in geosciences is commonly reféoas data assimilatiomp-
ley, 1997], and has a long-standing tradition in NWP. The goal is to/jgle the best pos-
sible estimate of the system’s state based on statistiayrmamical information, which
is then used as the initial condition for predictiois[nay, 2003. Observations are as-
similated into the models according to their relative aacies, and unobserved variables
and model grid points are taken into account by means of tioerelations, allowing for
propagation of observational information and reductiormebnsistencies. Data assim-
ilation (DA) has dramaticaly contributed to enhance fostckill in NWP, and is now
regarded with attention by the s2d community. Coupled dssavalation schemes are
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being developed for climate models with the hope of reduanegnsistencies between
separate model compartments, but have a long way t®gg R013. Such schemes are
in contrast to simple FFI and Al, and promise better init@hditions.

This study aims to contribute to the discussion on adequétalisation approaches for
s2d prediction, and is concerned with two main objectivdse first objective compares
the performance of Al and FFI for flerent observational and model error scenarios. The
second objective introduces and assesses the skill of twanadd formulations. Least
Squares Initialisation (LSI) utilizes correlations beemevariables of dierent model
compartments in order to propagate observational infaonand reduce inconsistencies
in the spirit of coupled DA. Exploring the Parameters Uraaty (EPU) is a technique
that corrects the model drift during a forecast run, basea simort time approximation of
the model error due to parametric uncertainty.

Our research is carried out using the low order climate mofileefia and Kalnaj2004.
Itis based on the Lorenz-3-variable modsabfenz 1963, with a slow component strongly
coupled to a fast component mimicking the tropical oceameaphere coupling, and a
weakly coupled fast component in analogy of the extrat@@tmosphere. Initialisation
schemes are assessed in the framework of an Observing S$gtamtation Experiment
(OSSE, Bengtssoret al.,, 1981) test bed, in which observations are sampled from a de-
finedtruetrajectory, against which forecast skill is assessed ak wel

Parts of this study have formed a publicati@afrasset al, 2014, currently under revi-
sion. A unified formalism based on the notation and concejpBAatheory from which
FFI and Al can be derived, has been proposed. We make usesdbtimalism in our
methodology.

Chapter2 covers the background related to our research. Ch3ptéoduces the method-
ology, the aforementioned schemes, and the low order cimmatdel. Results are given
in chapterd. Finally, conclusions and future work are summarized irptéib. We also
encourage the reader to make use of the list of acronymsit@wé the table of contents.






2 Backdrop

2.1 From numerical weather prediction to climate
projection: features of different time scales

Numerical weather prediction (NWP) is an initial value gdesh. A model representing
the necessary dynamics is integrated starting from arairstate informed by the most
recent observations. The quality of a forecat) will depend on how well the model
F(x") represents the real dynamics, as well as the quality ofritialiconditionsx ' (ty).
The system state is given by a state vector containing atmmétion of all variables at all
geographically located model grid points, the supersdriptands for the forecast state,
andt represents the forecdstdtime. The erroe’(t) = x'(t) —x"3(t) at any forecast time
t (in the scale resolved by the model) is unknown, whéféis a projection of the true
continuous dynamics onto the discretized model grid. A ebeervationg®®s samples
nature, subject to instrumentational errors and having eéhnsmaller dimension than the
model state due to a limited observational network. Merdghgobservations with the
model state results in the best attainable representatitremature state, which is the
goal of the data assimilation process described in S26t. The resultinganalysisstate
is used for the initial conditions, as well as for forecagtl slerification, establishing a
proxy for the unknown nature state.

Despite the shortcomings intrinsic in the field with regawadthe impossibility of perfect
observations or their perfect geographical distributiangd the impossibility of a per-
fect model, the skill of today’s weather forecasts up to ssveays in the future bares
witness to how far NWP has advanced. This is widely due toribeeased power of su-
percomputers allowing for much finer numerical resolutiand fewer approximations;

Daily Weather Seasonal to ~1 Year Decadal Muiti-Decadal to Century
Forecasts Outlooks Predictions Climate Change Projections

Initial Value
Problem

time scale

Forced Boundary
Condition Problem

Figure 2.1: Schematic illustrating progression from initial value Ipl@ms with daily
weather forecasts at one end, and century climate chanpeefpons as a forced boundary
condition problem at the other. Seasonal and decadal pidi@lls in between. After
Meehlet al.[2009.
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16 Chapter 2. Backdrop

improved representation of small-scale physical processhin the models; more accu-
rate methods of data assimilation incorporating obsesmatinto the model and resulting
in improved initial conditions; and a wider observationatwork [Kalnay, 2003.
Lorenz[1963 discovered what is now referred to as deterministic chdmssed on a
simple system representing a convection cell, he foundsiblations were unstable with
respect to small modifications, so that slightlffeiient initial states can evolve into con-
siderably diferent states. Such a “sensitivity to initial conditionspmesents an unsur-
mountable prediction barrier dependent on the finite acyuch observationsljorenz
1987. It has given way to an ensemble approach initialising s\eajectories from per-
turbed, equally likely initial conditions, in order to assehe probability of a forecast by
looking at the forecasted ensemble spreézaliner 1993. The Ensemble Prediction Sys-
tem (EPS) thus explores the probability of a forecast bywemnglperturbations according
to the dynamics given by the model. This is particularly usbecause the evolution of
probability density functions (PDFs) using a high orderlimear model is not feasible in
practice. However, the ensemble size is far smaller thasybeEm’s dimension and can
only account for the system’s largest instabilities.

Long term climate projection is concerned with assessimgptobability of climatic
changes given a scenario of additional boundary conditidisch endeavors have re-
ceived widespread media attention in response to repottseolnternational Panel for
Climate Change (IPCC). Whereas weather forecast modalsnasall components be-
sides the atmosphere (ocean, land and cryosphere) as weDaand aerosol concen-
trations to be fixed for the short duration of interest, clienenodels make use of the
full variability of all components of the system that playaker on time scales of about a
hundred years, albeit at a courser resolution. Obsensatbthe Earth’s system are not
directly incorporated in centurial predictions, becausmamory of the initial conditions
is expected to be lost on such time scales. Multiple runsefabtes) of such models
are made in order to average over the internal variabilitthefsystem. Uncertainty in
climate representation is sampled using multi-models dtirparameter results from the
same modelHaineset al, 2009. Notice that the aforementioned prediction barrier is
overcome through a paradigm shift from forecasting spesifgtem states in NWP to
time-averaged probability distributions of such statesst@ined by the system’s “cli-
mate”.

Figure 2.1 [Meehl et al, 2009 indicates that climate projection is a forced boundary
condition problem mainly determined I630, and other aerosol or greenhouse gas con-
centrations. Seasonal and decadal prediction falls betdagy weather forecasts using
high resolution models, and lower resolution centuriajgutons, sharing features inher-
ent to both categories. Seasonal forecast models implechémttime scales spanning up
to twelve months have an active ocean component into whadlorean observations are
assimilated in order to initialise the predictiofriderson 200§. Due to the large signal
of the El Nifio Southern Oscillation (ENSO) throughout theif@and beyond, models
are tuned to get the tropical Pacific to work welldineset al., 2009.

In contrast to seasonal forecasting, decadal forecastdr@ibetween one and ten years
demand models that no longer operate under fixed exterrraiads from aerosol$; O,,

or the solar cycleHlaineset al,, 2009. Furthermore, it has been showiddineset al,



Chapter 2. Backdrop 17

2009 Smith et al,, 2007 that initialisation impacts forecast skill, and recenvances
of observing technologies for the slower components of timeate system give rise to
new potential. The Argo profiling float array in the oceans itarrthe top two km of
ocean heat content and density since 2007, and satellitesHad by the ESA (SMOS)
in 2009 and Nasa (Aquarius) in 2011 observe soil moistureoaedn salinity conditions.
Emerging coupled data assimilation approachzse] 2013 seek to optimally incorpo-
rate such observations of slow system components whiletenaing congruence in the
coupling of separate components, rather than assimilabegrvations into each compart-
ment autonomously (discussed later in S@dB). Such schemes are still in their infancy,
however, and current seasonal-to-decadal (s2d) forexasibve to initialisation of indi-
vidual compartments resulting in initial states that milgatincongruent with the model
climate. Classical Full Field and Anomaly Initialisationder investigation in this thesis
assimilate observations directly, in the absence of ang dasimilation. Note that s2d
prediction involves high-resolution models for better glation of both regional climate
and climate extremes in contrast to standard coupled maodels for climate projection
[Meehlet al,, 2009. Futureseamlesslimate predictions have been envisaged, predicting
a number of time scales usingi@irent versions of the same modeldehlet al,, 2009.

2.2 What do chaotic simple models have in common
with the atmosphere?

In his groundbreaking paper ddeterministic Nonperiodic Floyorenz[1963 found
nonperiodic solutions of a simple forced dissipative systepresenting a convection
cell. Although nonperiodic behaviour is a common featuraatural systems, distin-
guished especially in turbulent flow, the existence of deieistic nonperiodic solutions
had not yet been established. Foear systems, constant or periodic forcing leads to a
constant or periodic response, so that nonperiodic solsiticere sometimes regarded as
the result of nonperiodic or random forcingorenz[1963 showed that nonperiodicity is
not implicitly connected to randomness, but can be fullyed®inistic, with the addition
that such systems are characterized as haviegnaitive dependence on initial condi-
tions Besides having laid the foundation for a new branch of sgean chaos theory
the existence of nonperiodic determistic solutions based bighly truncated model of
convection dynamics has had profound practical implicegtio Earth system modelling.
Chaosis defined as aperiodic long-term behaviour in a deternminggistem that exhibits
sensitive dependence on initial conditiosgrpgatz 200J. Solutions do no settle down
to fixed points, periodic trajectories, or quasi-periodigectories; the irregular behaviour
stems from the system’s nonlinearity and is not a consegueirandom or noisy inputs;
and nearby trajectories separate exponentially fastat&kactoris defined to be a closed,
minimal, and invariant set that attracts an open set ofainttonditions Ftrogatz 200Q.
Any trajectory that starts in the attractor stays in theaator for all time, and any tra-
jectory that starts in its basin of attraction convergesails the attractor as— oco. A
strange attractors an attractor of a system exhibiting sensitive dependenasitial con-
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Figure 2.2: Evolution of an ensemble of initial points on the Lorenz (3Pé&ttractor, for
three sets of initial conditions infierent phase space regions. Predictability is a function
of the initial state. AfteiPalmer{1993.

ditions [Strogatz200(Q. A famous example of a strange attractor is the Lorenz+galsée
model’s [Lorenz 1963 “butterfly”, proven to exist byrucker[1999.

Today, the chaotic nature of the atmosphere is widely aedefftevisan and Palatella
2011]. This conclusion has been drawn from observational sfydig well as from work

on low order truncations of atmospheric dynamieslmer 1993. First of all, weather
forecasts starting from very similar initial conditionsncavolve into very dterent at-
mospheric statedBluizza 200J. Then, simple models such as the Lorenz equations, or
10-component barotropic equatiortee[Swart 1997, show qualitative similarities with
the behaviour of the large scale atmosphere in the existd#racesgime structure, as well
as distinct time scales. Such time scales are connecte tpu#si-stationaryregimes,
and correspond to an oscillation time around a regime cielhtemd a residence time
within a regime Palmer 1993. In reality, weather regimes have been observed to be a
feature of low-frequency atmospheric variability, in winiglanetary flow patterns appear
repeatedly at fixed geographical locations and persistriztie life times of individual
weather disturbance&hil and Robertsor2003.

Another distinguishing property of the Lorenz equationsrared in the atmosphere is
the existence of distinct phase space regions of high (lestability associated with low
(high) predictibility. Figure2.2 illustrates the phase space evolution of thref@edent
ensembles of initial points on tHeorenz[1963 attractor Palmer 1993. Trajectories
initialised from the ensemble in the top panel remain claggther throughout the en-
tire prediction. Trajectories initialised from the ensdenin the bottom left panel remain
close initially, but eventually diverge. Trajectoriestialised from the ensemble in the
bottom right panel diverge almost immediately. In the lastreple, two entirely dferent
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and equally probable system states can evolve from the diserhinitial conditions,
making forecasting fruitless. Thus, predictability is adtion of the initial state, and the
evolution of an ensemble can serve as a measure of forecdstlplity. Ensemble Pre-
diction Systems are now common practice in NVBRigzaet al,, 1999.

Perturbation growth is given by theyapunov exponentsin numerical studies of the
Lorenz attracttor, one finds thiat(t)|| « ||5o]l€”t, wherey ~ 0.9 is the (leading) Lyapunov
exponent §trogatz 200J. This value represents an average over the entire attyactd
describes the growth rate of a pertubation in lihear regime, i.e. for|6o|| — 0. The
linear error doubling time is then on average giverity % In 2, a system-intrinsic value
fixing a predictiability horizondependent on the initial error size. The exponential di-
vergencesaturateswhen the separation of trajectories is comparable to theetier of
the attractor, as they cannot evolve further apantdgatz 200J. Lyapunov exponents as
well as their computation are discussed in S8cB. Sufice it to say that the calculation
of such exponents are neither feasible nor particularlyralele in NWP, the former for
the reason that the model dimensions are too large to geblithé system’s instabilities,
the latter due to the fact that the fastest growth rate ocmuithe scale of the Brownian
motion, saturating rapidly.

Exponentially growing errors saturate eventually, i.eeitlyrowth rate subsides as the
magnitude of the errors increaséofenz 1987. A study byLorenz[1969 indicated
that even if the larger scales could be observed perfeb#yinevitable uncertainty in the
smaller scales would after a day or so induce errors in tlyetascales, comparable to
the larger-scale initial errors which presently resuliriromadequate observations. The
induced errors would then grow as if they had been presetillyi This was later ob-
servationally confirmedjomerville 1979. Thus, small scale features with fast doubling
times that are unlikely to be resolved incurr a bound on tlee@cy of one-day forecasts,
ultimately resulting in a meapredictability barrier[Lorenz 1987. Early estimates of
atmospheric doubling times with realistic models amounteabout five daysharney
et al, 1964, based on deviation rates of perturbed integrations flwgrcontrol. The esti-
mates decreased as models became more retioeeinz[1987 found an error doubling
time of 2.5 days by comparing thefiiirences between the 1-day forecast with the 2-day
forecast from the preceding day and so on. UsingLitvenz[1982 method,Bengtsson
and Hodge4$2004g assess a potential increase in forecast skill compardd taitay by
about 3 days in the extra-tropics, and as much as a week inaies.

In this section we have illustrated how work with simple misdes found many analogs
in the real atmosphere, covering sensitivity to initial dions, regimes, characteristic
time scales, predictability, and error saturatiGtfalmer[1999 investigates the response
of the Lorenz equations to a small-amplitude imposed fgreis an analogue to anthro-
pogenic climate change, finding a signal strongly depenadletite system’s natural vari-
ability. In our study, we follow the philosophy ¢foskins[1983, that understanding is
achieved through the interaction of NWP and conceptual msdzkdonging to a continu-
ous hierarchy, extended Balmer{199§ to climate models too.
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2.3 Extended range prediction

In Sect. 2.2, we have discussed the deterministic predictability kawf approximately
two weeks [orenz 1987 as a consequence of the chaotic feature of the atmosphere.
Prediction horizons beyond this limit are knowneagended ranggPalmer 1993. The
objective of extended range predictions is to infer quesstitlescribing the PDF of the
atmospheric state, that can remain predictable on mucletdinge scales. Predictability
can arise fronexternalfactors that alter the likelihood of residence in atmosyaegtrac-
tors [Palmer1993. In principle, a quantity can be defined as predictablesiprobability
of occurrence is larger than a random guess obtained freenydongstatistical average,
wherevery longmight indicate a sfiiciently larger time period (e.g. an order of mag-
nitude) compared to the forecastedanperiod . We exemplifly this on the basis of the
guasi-periodic solar forcing that modulates the weathdf Bltside of the tropics on the
time scale of the Earth’s orbit. It is easy to infer that thewtoof August of the next year
will most likely be on average warmer than the month of Jaypé@rany location on the
extratropical Northern hemisphere. A prediction of thisckin which we have predictive
skill compared to a random draw from a multi-year statisto@rage appears trivial, but
we can also establish that the same can be inferred for tlécpom of the relative mean
temperature dierence between January and August of any year up to manyathasis
of years in the future. In relation, the half-year accuraghative to the long prediction
horizon already seems a lot more impressive. This kind ofir@ay is solely due to the
(very predictable) quasi-periodic nature of the Earthlsitpas well as the impact due to
the magnitude of the solar forcing on the Earth’s atmosph&tee Milankovich cycles
[Milankovich, 1941 represent documented signals in the Earénhives(e.g. polar ice
sheets) of much slighter changes in solar forcing, barirtgegs to the Earth’s climatic
response to a quasi-periodic forcing. Interestingly, ihihe expected response olira
ear system to such a forcing.prenz 1963, indicating that a linear approximation of the
Earth’sfirst order, equilibriumresponse to a forcing is somewhat justified. In summary,
the PDF of the Earth’s atmospheric state, i.e. waather is clearly a function of bound-
ary conditions such as the forcing.

Abstracting from the example above, if climatic parametked exhibit a forcing on the
Earth’s atmosphere are predictable to some extent, thea ialso hope to make infer-
ences about the atmospheric PDF in response to the forcungh @edictability due to
evolving boundary conditions is known agedictability of the second kindn contrast
to predictability of the first kindassociated with initial conditionsplnay, 2003. The
most prominent of such parameters are sea-surface tempgdBSSTSs), but variables
describing soil moisture content, land cover, sea-icergxtend snow covergwiers and
Kharin, 1998 Doblas-Reyest al, 2013 all play a role too, also due to insulation and
albedo &ects. The slow nature of theryo- and hydrospheress much in favour of the
predictability of such climate parameters. Note also thatdased forcing due to anthro-
pogenic greenhouse gases has now become an important sbpredictability too.

In more general terms, climates in which a large fractionhefinterannual variance of
seasonal means originates from sources other than higheineg weather are often de-
scribed agotentially predictabldMadden 1976, where the wordpotentialindicates
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that the predictability also depends on the predictabdftthe anomalous forcingjow-
ell, 1999. This can be assessed in terms of a signal-to-noiseFatiar2, /o2 of the total
variance divided by the unpredictable weather nolMadden 1976 Madden and Shea
1978 Madden 1989. It is estimated using purely observational data at eachtpcan
be plotted globally, and includes secondary sources ofigteddllity, not just that due to
SSTs Rowell, 1998. However, the underlying model that separates the sigoat the
unpredictable noise assumes a constant signal throughseashn, which is often untrue
[Rowell, 1999. An alternative method relies heavily on the underlyingdeks climate
skill, and assumes potential predictability to be derivetirely from oceanic forcing. In
this approach, potential predictability is measured usingnsemble of climate simula-
tions, forced by the same observed interannually varyingsSBut started from dierent
initial atmospheric conditions. The sensitivity to init@nditions is used to quantify the
random component of interannual variability, whereas #lative similarity is used to
guanitify the potentially predictable component of thatetariance Rowell, 1999.

The potential for skillful decadal predictions dependgédy on whether models simu-
late suticient decadal climate variability both in terms of magnéws well as structure
[Meehlet al,, 2009. Zwiers and Kharif1998 compare the ratios of the simulated to-
tal variance with the observed total variance, and the sitedlweather noise with the
observed weather noise for 3afdrent models within the Atmospheric Model Intercom-
parison Project (AMIP). The ratios indicate a large spreadragst models in terms of
how well they simulate the observed total variance, as vedlha weather noise for some
variables. Figur@.3shows the ratid- between the interannual variance of the seasonal
mean and the corresponding weather noise for Decembeadakabruary (DJF) 850
hPa temperaturégsg as simulated by four éierent models calculated according to the
alternative method described above. All models simulatedTlgsg potential predictabil-
ity than computed from the observations. Although thereisststency between models
in terms of the proportion of the globe at which significarggictability is found (e.g.
strong evidence of potential predictability is seen in ttopics), there is considerable
variation in the spatial pattern of significaftstatistics Zwiers and Kharin199g. En-
couragingly,Hegerlet al.[2007 have shown that the temperature variability of coupled
climate models over global and continental space scale®alistic, even on time scales
up to multiple decades.

Atmospheric long-term variability patterns exist, thavéaifferent time scales and spa-
tial impact, and are commonly known as the interannual EloNsiduthern Oscillation
(ENSO), the decadal North Atlantic oscillation (NAO), thadfic decadal variability
(PDV), the Atlantic multi-decadal variability (AMV), andhé Madden-Julian oscillation
(MJO), to name only a fewdmithet al, 2013. The largest source of seasonal forecast
skill is the ENSO Bmith et al,, 2012 Doblas-Reye®t al, 2013, the first successful
prediction pioneered bZaneet al.[1984 with a simplified coupled ocean-atmosphere
model. This is in line with the predictability signal in Fi@.3, although such studies
far exceed actual forecast quality achieved due to assangxsuch as perfectly predicted
boundary forcingsPoblas-Reye®t al, 2013. Warm sea-surface temperature anoma-
lies in the tropical Pacific lead to increased ocean-to-aphere heat flux as well as
a coupled feedback, impacting the structure of tropospharnfall latent heat release
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Figure 2.3: The potential predictabilty rati& between the interannual variance of the
seasonal mean and the correspondng weather noise indugadceafor analysed DJF
meanTgso as simulated by ECMWF, b CCC model,c MPI model,d UKMO model.
Contours are 0.5, 1, 2, 4, 8, and 16. Light (dark) shadingespiwnds td- ratios that are
significantly greater than one at the 5% (1%) significancelleMigh terrain areas have
been masked. Aftetwiers and Kharirf1999.
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with widespread teleconnections in remote regions of tlialDoblas-Reyest al,
2013. ENSO is now accurately predicted many months ahead, wittaghical models
slightly more accurate than statistical techniguesifthet al, 20139. For example, at 8
months mulitmodel correlation cfiegients for Nifio-3.4, a region in the tropical Pacific,
are approximately 0.75, and then they drop to 0.6 and 0.5 atdriths and 12 months
respectively. Seasonal forecasts of Atlantic tropicatratactivity are skilful and issued
operationally Emith et al, 2017, too. In comparison, decadal prediction is still in its
infancy [Haineset al., 2009 and will be followed up in our discussion on initialisation
below.

2.4 Narrowing uncertainty by means of initialisation

Climate predictions are subject to three sources of uriogytéo varying degrees, de-
pending on the forecast time horizon and spatial sddénkins and Suttarf009. The
first is the uncertainty connected to the chaotic featurab@atmosphere, discussed in
Sect.2.2 Predictions aside, an atmospheric state can be chosemdainerom the “ob-
served” atmospheric PDF. This is also known asititernal variability of the system
[Hawkins and Suttor2009. The second source of uncertainty is relateantodel defi-
ciencies and the third is thecenario uncertaintgssociated with future radiative forcing
due to GHG emissiong{awkins and Suttor2009. Figure 2.4 shows the total variance
for the global decadal mean surface air temperature predgsplit into the three sources
of uncertainty as a function of lead time. On climate prag@ttime scales, the scenario
uncertainty contributes towards the largest total vaeasfdhe mean global temperature,
whereas the internal variability is almost entirely insfgant. At the other end of the
spectrum, the insets show that during the first two decadegltibal as well as local total
variance is comprised only of uncertainties related to mim@elequacy and internal vari-
ability. Additionally, we can see how the variance due t@inal variability drops after
making a decadal instead of an annual average, and thatuncattainties are likely to
be higher than those related to global averages. The relatiportance of internal vari-
ability and model uncertainty will dier for other variables. Nevertheless, it is likely that
the uncertainty in regional climate predictions for the trfexv decades is dominated by
model uncertainty and internal variablity, that are patdlytreducible through scientific
progressifawkins and Suttor2009.

Improving climate models is an ongoing process, which ismerchanced in the wake
of an improved observational network. In order to narrow uheertainty with regards
to the internal variability, its evolution can be predictadinitialising dynamical models
with the current state of the climate system. However,ahgation is non-trivial, and
difficulties must be overcome in order to achieve such improvesrarmreality [Smith
et al, 2019. Predictions beyond a few weeks rely on observations oftbe coupled
components, including e.g. the sub-surface ocean, whelsparse. Then, constrain-
ing a model with observations generally disrupts its dyrabalance, leading to rapid
re-adjustments, known as initialisation shocks, which lead to loss of forecast skill
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Figure 2.4: Total variance for the global decadal mean surface air teatpe predic-
tions, split into the three sources of uncertainty. Orangjel$irepresent the internal vari-
ability component. Insets: As in the main panel, but onlyiéad times less than 20 years
for (left) the global mean and (right) a North American mebead times shorter than 5
years are plotted using annual mean data to highlight hounteenal variability compo-
nent is vastly reduced when considering decadal mean ddtar Hawkins and Sutton
[2009.

[Smithet al,, 2012 Doblas-Reyest al, 2013. Furthermore, model deficiencies result in
a difference, obias between model simulations and observations averagedaqygen
period. Figure2.5gives an example of model bias for the HADCM3 general cirttoite
model, showing a global map of thefidirence in model simulated and observed annual
near surface temperatures averaged over the period 198D-Pluring the forecast, the
model will drift back towards its preferred climate statgroducing errors that could be
large compared to the predictable sigratithet al., 2013. Such drift can be neglected
in NWP, because forecast horizons are short, and the modegigarly constrained by
observations and thus kept close to the real climitegnussoret al, 2014. Also, in
NWP the initial condition error growth masks the bias, whighelated to model errors.
Finally, imperfect model simulations of internal variatyilas well as imperfect responses
to external forcing $mithet al, 2017 that might increase the bias over the forecast run,
will limit the skill improvement achievable through initisation.
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Figure 2.5: Example of model bias, shown by thefdrence in HADCM3 model simu-
lated and observed annual near surface temperatures ederegr the period 1960-2009.
After Smithet al.[201]3.

2.5 State-of-the-art initialisation techniques

Full Field Initialisation (FFI) assimilates the observations directly into the modéie
bias is corrected a-posteriori by applying a lead time ddpenhbias correction in post-
processing. In seasonal forecasting, it is also made depénd the seasonal cycléfg-
nussoret al, 2013. A robust estimation of the bias requires a large data skimafcasts
(i.e. retrospective forecasts). However, biases can bedkpendent, related toftirent
initial conditions and the nonlinear nature of the systéfagnussoret al, 2017. If the
bias is large enough, the nonlinear terms can become ndigildgy making such a linear
calibration process insiicient [Magnussoret al,, 2013. Furthermore, imperfect model
responses to GHG forcing can lead to mean changes in theSnaget al,, 2017, not
accounted for in the hindcast period.

Anomaly Initialisation(Al) assimilates thebserved anomaliesito the model, i.e. the
differences between the observations and the observed meansa(gs) are added onto
the simulated mean of the model climabdgdgnussoret al, 2013. In effect, this is the
same as subtracting the model bias from the observations.rattonale is to avoid an
initialisation shock occuring from an initial state far an@om the model attractor, as
well as to avoid model driftflagnussoret al, 2017. Avoidance of shock is by no means
guaranteed, since the structure of the observed anomalynotaye consistent with the
model mean state, e.g. application of an observed sea-traay in regions where the
model never has sea-icklagnussoret al, 2013. Avoiding model drift allows the a-
posteriori bias correction to be independent on forecast tene, and therefore more
robust. However, calibration of the forecasts face the sproblems as FFI, which are
connected to the nonlinearities arising when a system’swatse is diferent Magnus-
sonet al, 2013.

Practical concerns arise for both approaches. Computatibias estimators for decadal
prediction experiments is expensive. The seasonal indigpee of the bias correction
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Figure 2.6: lllustration of bias correction for full field (left) and anm@aly (right) initialisa-
tion. Thin black curves show the observed time series of aihmean global temperature.
Coloured curves show the ensemble mean hindcasts, witreht colours showing dif-
ferent start datesaj and @) show absolute values (K)c)and @) show anomalies after
adjustment for model biases. The solid grey and black dashe@s in &) and ) show
values from the analyses and mean uninitialised model abnins respectively. After
Smithet al.[2013.

technique when using Anomaly Initialisation thus allowssleomputation for equal level
of “robustness”. On the other hand, the model climatoldgreean over a long period has
to be computed for the implementation of Al. Moreover, theghng period used for the
observed climatology must be consistent with that usedi®mntodel climatology. Some
regions like the southern oceans had not been observedoptbetadvent of Argo, or
only sporadically, so that there is a lack of information &ide a long-term climatology
[Magnussoret al,, 2017.

Figure2.6 [Smithet al,, 2013 illustrates the evolutions of forecasts (i.e. model inéeg
tions) after FFI (top left) and Al (top right). Given that sumtegrations have been run
over a past record from 1960-today, they are also termmedicasts with the total period
after 1960 known as thkindcast period The thin black curve represents the observed
annual mean global temperature, which has increased byt 8wl since 1960. The
black dashed curve shows the mean of uninitialised longrebnins, indicating a global
average model bias of about -0.5 K. Note that the model cbnins show a similar in-
crease in global annual mean temperature due to greenhasi$erging. The grey curves
show values from thanalyseswhich have already been described in Se&tl as the
initial conditions after a merging of observations with thedel state (here: according to
either FFI or Al). The coloured curves show the ensemble rh@aitasts, with dferent
colours corresponding to fiierent start dates. After Full Field Initialisation we obsger
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that the forecasts drift within approximately the first yeawards a cooler average model
climate, before following the increasing model trend. Affeomaly Initialisation, the
forecasts start close to the model climate and do not exitdiscernable drift. Due to
the cold bias of the model, it is more indicative to look at tee the model predicts the
observed anomalies, rather than absolute values. Thenbptaels display the observed
as well as predicted anomalies after application of the baasection procedure. Note
that the observed record shows a recent stagnation of theimgitrend in the last decade
or so. As seen here, this stagnation has not been predictethby models, which has
caused much debate in the scientific commur@y¢mas et al2013. This shows how
the bias can change due to incorrect responses to greenpasesg, that neither Al nor
FFI can avoid $mithet al, 2013.

Recent decadal prediction studies have demonstratedskitind the seasonal time scale
using FFI, e.g. byreageret al.[2017. Several have adopted Anomaly Initialisation, e.g.
Smithet al. [2007. It is important to assess their relative merits, and feehsstudies
exist [Magnussoret al, 2012 Smithet al, 2013. It is unclear which approach is best
for seasonal-to-decadal prediction, and both are cuyrdmting evaluatedgmith et al,
2013.

2.6 Data assimilation

Data assimilation (DA) is a field that deals with the incogian of data from observa-
tions into real physical models. Its main ambition is to aibtae most accurate estimate
of the true state of a system given the information at handntast geophysical applica-
tions, the dimension of the physical model is greater thardimension of the observa-
tional phase space. This means that any given observaignélvector can be related to
more than one estimate of the model state, making the probieterdetermined. How-
ever, knowledge of the past state of the system can furthestian the range of possi-
bilities of the current model state. In NWP for example, inieththe model is updated
with new observations at regular short time intervals, tloeleh statamplicitly contains
information about the past observations too. Accordinigbth incoming observational
data and a calculated model trajectory are merged to infeestimate of the truth that
utilizes the availability of both sources of informatiornteis expected to be more accurate
than either sources alone. Accuracy is maximized by acguknowledge of the error
statistics of both sources of information. If one sourceated to be more accurate than
another, then weights to each source can be given apprelgriat an idealized scenario
in which errors are normally distributed, a unique set ofgh&s minimizing the error
variance of the estimate, or so calladalysis can be foundKalnay, 2003.

In a Bayesianapproach, the model state uncertainty after a short forécasso known
as theprior, and the observational uncertainty is known aslikelihood The resulting
PDF, a product of the two PDFs around the mean model or ob$state, is known as the
posterior. This approach is associated with Bayes’ theorem of canthitiprobabilities,
and interpretes the incoming data aseguenceultimately resulting in the minimization
of a cost function. The prior is sometimes also referred tthad®ackgroundor thefirst
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Figure 2.7: lllustration of the properties of the probability distriban of the analysig,
given observation3; andT,, using either the least squares of the Bayesian approach.
After Kalnay[2003.

guess In the following we only give an overview of the basic idea&himd DA, as well
as an explanation of the equations necessary for our aafysi a complete description
of the many DA techniques, sé&&lnay[2003.

We introduce main concepts using an example fkamay[2003. Assume two indepen-
dent measurements of the temperature at a given locatiotimadThese can be written
in the form

Tl = Tt + € T2 = Tt + & (21)

whereT, represents thieue temperature, ané , are the respective errors associated with
both measurements. We assume unbiased instrumentsg, kee, = 0, and knowledge
about the variances of the Gaussian observational esrpand o3. Furthermore, we
assume uncorrelated errors, i€e, = 0. Given this statistical information about both
observations, we can estimdtefrom a linear combination of the two observations:

T=aTi+aT>, (22)

Imposing the condition of an unbiasadalysis T we write T = T;, so thata, T, + a, T, =
T, and thus, given unbiased erroes,+ a, = 1. T will be the best estimatef T; if the
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codficients are chosen to minimize the mean squared error of

0'2 =(T-T)? = (@T1+aT, - T)? = (a(T1 — Ty) + ax(T2 — Ty))? (2.3)

Substitutinga, = 1 — a;, and minimizing with respect ta, gives

o5 o2 (2.4)
A = ——— = —F7 .
2 2 2 2
U'l+0'2 0'1+0'2

The weights of the observations are proportional to thesuescy. Substituting the coef-
ficients of Eq.2.4into Eq2.3 we obtain a relationship between the analysis variance and
the observational variances:

1 1.1 (2.5)

o3 o2 of
Thus, if the coéficients areoptimal the erroraunbiaseduncorrelatedand their statistics
Gaussianthen the precision of the analysis is the sum of the pretssad the measure-
ments Kalnay, 2003. Figure 2.7 illustrates the probability distribution of the analysis
P(T), given the observationg, and T, and their associated uncertainties. The resulting
analysis is more accurate than either observed tempesature
Assume that one of the two temperatufigs= Ty, is the forecast or background value,
and the other is an observatidn = T,. Using Eq.2.2and Eq.2.4, we can rewrite the
analysisT = T, as

Ta = Tb + W(To - Tb) (26)

where [T, — Tp) is known as the@bservational innovatiorupdate or incrementi.e. the
new information brought by the observatidfv.is the optimal weight given by

W = gd(02 + o2 (2.7)

Such a rearrangement of equations gives rise to the foltpwiterpretation of the prob-
lem. The analysis is obtained by adding the innovation tofitisé guess, weighted by
the optimal weight. This weight is the background varianseéded by the total error
variance. The larger the background error, the larger tieectoon to the background.
Finally, as before, the analysis precision is given by tha sfithe background and ob-
servation precisiongalnay, 2003.

Equation2.6is equal to the Kalman Filter analysis updataman 1960Q. Equation2.6
bares the same form for multidimensional problems, in whigcandT, are three dimen-
sional fieldsx, andx, of the order of 18[Trevisan and Palatell2011 and T, is a set of
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observationy, of the order of 18 or 1¢° [Kalnay, 2003. The error variances are then
replaced byerror covariance matricesand the optimal weight by thealman gain matrix
W [Kalnay, 2003:

Xa = Xp + W[y, — H(xp)] (2.8)
where
W =BHT(HBH' + R)? (2.9)

H is theforward observational operatanapping from model space into the observational
space and thus converting the background field into “firssgeg of the observations”
[Kalnay, 2003; H is its linearized formB andR are the respective background and ob-
servational error covariances ofi@ring dimensions, transformed into the observational
or model phase spaces with the helg-of

We end this chapter with a few final comments. First of all, 28 and2.9 are by no
means limited to the field of NWP. Wha unique to NWP, however, is that the back-
ground state is obtained from a short, recent forecast. 8fotecast has a much smaller
error compared to a background state obtained from thesasitinatology. This is practi-
cally feasible because forecast models are accurate epangdlthe DA cycle is repeated
every few hours or so. Thus, despite a limited observatinaalork and an underdeter-
mined problem of finding a model state in accordance with theeovations, the model
state is further implicitly constrained by past observagio The DA cycles “keep” the
model close to the truth.

The second important point is connected to the error caveeianatrices. The observa-
tional errors are reasonably assumed to be uncorrelatedasthe matrixR is diagonal
[Kalnay, 2003. On the other hand, the background error covariance mBtreproduces
the forecast error variance along its diagonal, but als@tbss-correlation of forecast er-
rors in its df-diagonal elements. This detail is crucial, because inalthe inference of
correlations between variables and grid pointalhay, 2003. In this way, even variables

/ grid points that have not been observed are updated dueitactneelations with other
observed variablesgrid points. Observational information psopagatedrom observed
to unobserved “regions” of the model by means of the foreeast structure, achieving
dynamical consistenceCoupled data assimilation schema® still in their infancy, but
their goal is to propagate observational information axseparate, but coupled compart-
ments, e.g. the ocean and the atmosphere. In s2d predictiompartments are currently
assimilated with observations and initialised separat&hyis can lead to dynamical in-
consistencies in the analyses, making forecasts more raldleeto initialisation shocks.
Finally, forecast errors, i.e. the entries of the maBjpare unknown. The NMC method
[Parrish and Derbel 997 estimates them by comparing 12h and 24h forecasts, artd trea
ing the 12h forecast as the “truth”. The assumption is thahtdel is a perfect represen-
tation of the underlying real atmospheric dynamics.



3 Methods: A research test bed for the
Initialisation of s2d prediction

3.1 Research objectives

We will begin this section by restating the objectives of mgearch already discussed in
the Introduction. Our research is composed of two main rekdaes. The first line is
related to the relative performance of Anomaly and FulldFieitialisation under dter-
ent scenarios. The second line investigates the perforenafredvanced schemes.

The first branch of the first line is the comparison of Anomatg &ull Field Initialisation
for different observational error, as well agtéient observational distribution scenarios.
We investigate how initialisation limited to individual €eanic” or “atmospheric” model
compartmentsféects the performance of either algorithm.

The second branch of the first line explores the role of panacnaodel error on the rel-
ative performance of both algorithms. Anomaly Initialisathas been devised to tackle
the dfects of drift on forecast skillNlagnussoret al,, 2013. Drift arises from errors in
the model. Thus, studying théfects of model error on the félerent algorithms’ forecast
skill is the foundation of any justifiable comparison.

The first branch of our second research line is the study ofdaareed initialisation
scheme that intends to propagate observational informatigpartially initialised sys-
tems to the whole model domain according to the forecabokgrounderror structure
of the model. Least Squares Initialisation (LSI) is basedtamdard practices in data as-
similation (see Sec.6) common in numerical weather prediction, from which it gdes
its name. We propose the use within a climate predictionexdity replacing the forecast
error covariance matrix with the covariances of the modehaaties.

The second branch of our second research line studies tfegrpance of an online drift
correction technique applied during the forecast run afigéalisation. Exploring the Pa-
rameters Uncertainty (EPU) is designed to estimate, anastipthe forecast bias related
to parameteric model error. This is done over short timerviads in which a linear ap-
proximation of the forecast error can be justified.

In order to meet the objective€arrassiet al. [2014 have developed a unified formal-
ism using notation and concepts of data assimilation th&org which all of the above
schemes can be derived, described in the following secBdh8.3and3.4. Our research
is carried out using a simplified dynamics, introduced intS84&, for better control and
a statistically robust analysis. The experimental setlipi® in Sect. 3.6. Verification
of skill, and other measured quantities are summarized at. Se7. Finally, our setup
requires an understanding of the stability features of §reathical system. SectidB.8
covers the stability analysis of the systems we use. Theadetbgy and experimental

31
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setup introduced in this chapter is consistent Witirasset al.[2014.

3.2 Problem framework

In the following section we will formalise the problem andtst the assumptions upon
which our setup is based. We write the prognostic climateehadder the form of an
autonomous dynamical systém

dx

— =F(x, 4 3.1

5 = Fx.2) (3.1)
wherex andA are the state and parameter vectors of dimenisexmd P respectively. We
define a true solution that will represent a “target”, whist thodels shall seek to predict.
We call it “the nature”. We assume the nature to be given as

dxnat

S = PO ™) + G (3:2)

where|G| << |F|. The termG represents the processes in nature that are not (well)
represented in the prognostic models. Note that it doesatotent for errors arising from
unresolved subscales, a weighty source of error in reabtémmodels. Hence, model and
nature span the same phase space of dimemsibmour experiments, we shall limit our
focus to model error originating from parameter misrepnéstéon only, i.e61 = 1 — A"
andG = 0.

We further assume that observations forming a vegtos y°(t;) of dimensionM are
available at equally spaced timgs= ir,i = 0,1,..., wherer is a fixed time interval
between successive observations. In typical applicatittresobservations vector has a
much smaller dimension than the model state vectorM.&:< |. The observed variables
are assumed to be unbiasefieated by a Gaussian white noise of zero mean and standard
deviationo®, i.e. €® € N(O, o°).

y° = H(X™) + €° (3.3)
whereH is the observation operator mapping from the nature to tisemational sub-

space of the model domain. In this formulation, the obsesaat error accounts for both
the instrumentational as well as the representativityréoonnected téd [Kalnay, 2003.

1A dynamical system is prescribed by a fixed rule that detezsithe time dependence of a point in
geometrical space. It is autonomous if this rule is timeafant [Ott, 2002.

2Localised observations undergo value fluctuations sulgestibscalar dynamics not represented in the
model. Therefore, observations can misrepresent largge socodel dynamics they are intended to
sample. This leads torapresentativity errofKalnay, 2003.
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3.2.1 Excursus: Bias is induced by model errors alone

The following derivation can be found @arrasset al.[2009. We can write an expres-
sion for the forecast bias at tint@s follows:

eas(t) = ef (t) = xf(t) — x"2(t) (3.4)

wheree’@s signifies the biag' the forecast error, and the overbar indicates the mean over
an ensemble of initial conditions. The drift is given by agidterivative, i.e. the slope, of
the bias.

mn:%&ﬁn (3.5)

We now illustrate that these quantities are caused by emnotise model alone. The
forecast error at timeis

def(t) _dx(t) dx"(t)
dt ~ dt dt

Let us first assume that the model is perfect,l.e. A"*. Hence,

= F(x", 2) — F(x", A" (3.6)

f
%%:F@Qﬁ%-ﬁﬁ%ﬁﬂz%;ﬂem (3.7)

where we have linearized for small errors. We can solve thier@ntial equation by
separation of variables:

tOF
Inef = — |.rdt 3.8
ne i;mw (3.8)

This can also be written as

e'(t) =M - e'(ty) (3.9)

whereM = exp(ft; & |rdt) is the linear model propagator. If the initial conditiorre a

unbiased, i.eef(ty) = 0, then

() =ef(t) * M -e(t)) = M - e(ty) = 0 (3.10)

We have shown that in the perfect model setup, for unbiagedliconditions and under



34 Chapter 3. Methods: A research test bed for the initietinaf s2d prediction

a linear hypothesis, no bias or drift occurs.
Let us now assume that our model equations are subject tonpara error. Hence,
A# A" 51 =21- 2" Then,

de' (t)
dt

Following similar steps as earlier, we obtain

oF oF
= F(x", 2) — F(x"a, ") ~ &M -e(t) + ﬁ'* .61 (3.11)

L oF
e'(t) ~ My, - e(to) + f Mt,,ﬁm(mr (3.12)

fo

where the first term is the general solution and the secondd¢emprises a specific solu-
tion of the diferential equation. Assuming again unbiased initial coods,

t
e"as(t) = ef(t) ~ f Mt‘ra_F|x 204dt (3.13)
v 047
Equation3.13gives the bias evolution in the presence of unbiased iratalitions, and
model error coming only from misrepresentation of paramset€he linear analysis rep-
resents a good approximation for small errors at short tiMéescan thus conclude that in
the case of parametric errors and unbiased initial conditithe drift can only be caused
by model deficiencies.

3.3 Standard initialisation approaches

We follow the formulation byCarrassiet al. [2014 of the standard initialisation algo-
rithms for s2d prediction using the notation and conceptdadh assimilation. Accord-
ingly, the resulting initial stat&® obtained after implementation of the initialisation pro-
cedure is called thanalysis In the absence of an initialisation procedure, the premhst

are initialised on dackgroundstatex®, which is obtained from a long control run of the
model after a transierspin-upperiod. Thus, the background state is by definition a state
of the modelx® := x™. We shall assume that the observation operator is lineandy

aM x | matrix, H.

3.3.1 Full Field and Anomaly Initialisation

The Full Field Initialisation approach reads as follows:

x2 = x? + HT[y® — Hx"] (3.14)
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On whichever grid points the observations are availabkeptckground state is replaced
by the observations. Where they remain unavailable, th&gvaand state is left un-
changed. The term in the square brackets reveals the obheeataupdate to the back-
ground, also referred to as thnovation(see Sect2.6). If the observations are sampled
at the grid points of the model and are measured directlypbservational operator is
diagonal, its only entries encompassing the terms one or fethe entire system is ob-
served, i.e. observations are available at all grid pothespbservational operator is equal
to the identityH = 1.

Similarly, for Anomaly Initialisation we obtain the equarti

x2 = x? + HT[yPs° — Hx"] (3.15)

where the observations are merely replaced by pseudoatiesrs

yP = y° — (y° - HX®) (3.16)

The overbars indicate a time average, and the term givenaickbts in Eq.3.16is the
(negative) bias. This is easily shown in the case of full olm#onal coverage of the
system:y® = X" andHx® = X®, hence §° — Hx?) = X"® — x® = —e"@s, The fact that it is
negative owes to the definition of the bias in By

3.3.2 Properties

The initial, oranalysiserror can be written a& = x? — x"3(t;). Assuming for simplicity
observation of the full system (i.el = 1) and using Eq3.14and3.15 the analysis errors
for the respective algorithms are:

e, =€, & =+ (3.17)
wheree?, e° ande”s stand for the analysis and observational errors, and tiseréspec-
tively. Under the assumption of unbiased observationsptban analysis errors sum up
to:

& =0, & =& (3.18)

wheras for the initial root-mean-square error we get:

ias?
RMSE; =0°, RMSE, ~ Voo + ¢ias :0'0\/1+ e:;_oz (3.19)
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In real applications the bias is usually larger than the olag®nal error €25 >> ).

In Eqg. 3.19we can see that the analysis rmse of Al in this case is mucls&sstive to
the observational error. Thus, the mean initial error of iBRHleduced after refinements
in the observations, whereas the mean initial error of Alfisatively reduced when the
prognostic model is improved.

On short forecast time scales such as in numerical weatkéigbion, dficiently reduc-
ing the initial error is desirable. For longer forecast hons such as in s2d prediction
for which growth of random error has already saturatedretoe to model deficiencies
plays a larger role. Therefore, the above stated initiargsroperties need not be deci-
sive. Anomaly Initialisation intends to circumvent lorgp drift, in the case of success
resulting in a slower error growth rate despite a largeahéiror.

3.3.3 A word on nudging

A model can respond with a rapid initial adjustment to iniidanditions that are incon-
sistent with its climate. It is prone to occur with Full Fididgitialisation, when natural
observations do not comply with the model, and is often retéto as a dynamical shock
[Magnussoret al, 2017. Such a shock can sometimes be remedied using Anomaly Ini-
tialisation, but not if the structure of the observed angmslstill, e.g. geographically,
inconsistentllagnussoret al,, 2013. A different approach has been adopted from syn-
chronisation theoryHBocalettiet al., 2004, known asnudging The idea is tawudgethe
model towards the desired state by relaxing it to a limiteéesebservations over a period
of time. This is a common initialisation procedure for theeag, in which it is relaxed
towards observed SSTMpgnussoret al,, 2013. We do not assess the performance of
this scheme in our study, but have added it for completion.

Nudging consists of the addition of a term to the prognosjeagions that acts like an
extra coupling term. The strength of the coupling 1s expressed as a relaxation time
scale, depending on the properties of the variable chosba #fected by the nudging.
The time scaler should be large enough to avoid a dynamical shock, but smaligh

to balance error growtiHoke and Anthesl976. The equation for Full Field Nudging
(FFN) can be written as

% = F(x) + HTQ[y? - Hx?]  t <t (3.20)
with Q being the diagonaM x M nudging matrix containing entries in units of time
y? signifies the set of nudged observations (or their intetpmia), withi = 1,2, ... cor-
responding to their succession. The initial conditidns obtained through integration
up to the initialisation time, i.e. the start dat®". For Anomaly Nudging (AN), the
observations are merely replaced by the pseudo obsersatidfg. 3.16 FFN has been
implemented operationally bylagnussoret al. [201 and AN by Smith et al. [2007,
2013 to nudge oceanic variables.
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3.4 Advanced schemes

In this section we follow the formulation b§arrassiet al. [2014 of two advanced al-
gorithms that comprise the second main line of our resedrelst Squares Initialisation
(LSI) has the aim of improving the initial conditions of patly initialised systems by
utilizing the information from observations of limited spaces of the model domain,
and propagating it to the entire model space by means of arepgationB™ of the
background error covariance matix The approximatio8™ contains the information
on the covariances of the model anomalies in fisdiagonal elements. Anomalies of dif-
ferent variables and flerent geographical locations are often linked, and the kedge
of one such anomaly can inform a guess about another anoKsaly.Sect2.6 on data
assimilation practices). The background error covarigmee, in reality, time-dependent
(e.g. diterent summef winter anomaly structures). Given thAthas a dimension of

| x | with | of the order of 18, the computational requirements are enormous. We use a
weaker time-invariant approximation.

Exploring the Parameters Uncertainty (EPU) is a drift cotro: technique applied dur-
ing the forecast run after initialisation. It approximatiee forecast bias originating from
parametric model error over short time intervals that amgeoeent with the hypothesis
of linearity. The approximation is based on a guess strategysamples parametric er-
rors ocurring within the range of parametric uncertaintite Torecast bias is subtracted
successively over the forecast run.

3.4.1 Least Squares Initialisation

Full Field (Anomaly) Initialisation replaces the backgnoustate with observations (ob-
servational anomalies) wherever available, and leavaeschanged elsewhere. Thus, ob-
servations (observational anomalies) are not weighedrdicgpto their accuracy, but
rather treated as if they were perfect. Furthermore, disereies can arise e.g. between
neighbouring grid points if some remain unchanged. Datarglssion algorithms have
been conceived in order to obtain a best estimate of theraygiteen the relative accura-
cies of the observations and the background, as well as nsaiimconsistencies between
the observational and background information. THeseand second goalsan be con-
sidered as separate, but they are both tackled using thelssrkground error covariance
matrix B. This works becausB contains the error information about the accuracy of the
background along its diagonal; in itffaliagonal elements it contains the information
about the correlation betweenfi@grent model variables, grid points, and levels (see Sect.
2.6).

LSl is based on a minimisation of the analysis error covagagiven the backgroursl

and observational errd® covariances. The analysi8 is obtained from a linear combi-
nation of the background staté and the observational updai® |- Hx"]:

x2 = x? + BHT[HBH" + R]™Y[y° — Hx"] (3.21)
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The observational update is weighted according to theivelatrors of both sources of in-
formation, where the relative errors are contained in thghtasng termBH'[HBH ' + R]
(see Sect2.6). Observational errors from flierent instrumentation are known, and typ-
ically uncorrelated, s® is assumed and set to be diagonal. However, the determinatio
of B is not as simple, and will be explained in the following.

Recall from Sect2.6that in the context of NWP in which E®.21holds, the background
statex® is obtained from a short-time forecast. The model is segaigntipdated with
observations according to E8.21, and kept close to the “true” state. The important detalil
is that the forecast becomes the background in the follomAgycle. Thus, the back-
ground error covariance is obtained from the forecast ewwariance. The background
error after a short-time forecast is then define®as (ef)(ef)" = (x" — x")(x" — x"aY)T,
wheree' is the forecast error. Applying EB.21in the context of s2d prediction, the
background stat&® is now obtained after a long control run of the model. Theesfo
NWP methods for the estimation Bfno longer hold. Instead, Least Squares Initialisa-
tion is based on an approximation®f

B™ = a(x —X)(X — x)T (3.22)

where the overbars indicate long climatological time agesaandr can be described as
an adjustment cdicient. Eq. 3.22approximates3 using the covariances of the model
anomalies. The assumption is that the model is unbiased;ghkness of which is some-
what compensated with. With regards to thdirst goaland fora = 1, the diagonal
elements oB™ reproduce the variance of the climate, underlining tifais a random
state of the climate associated with a large error equaktalimate variance. The obser-
vations are always more accurate in comparison. Thus, tietifun ofB™ is not primarily

a representation of the accuracy of the background, whiahdimave been in accordance
with the first goal The aim of Eq.3.22is to find a representation of the correlations
between grid points and variables in it8-diagonal elements, in order to propagate in-
formation to unobserved domains of the model, and reduaensistencies. This is in
line with thesecond goal Notice also thaB™ is time-invariant. The computational re-
quirement of a time dependent background covariance nfatrs2d prediction would be
too large.B™ is obtained from a single, long control run of the model, aad be used
without further computationalffort for initialisation. The presence of a climate change
would further limit its performance.

Smith and Murphy2007 have applied a similar strategy in the initialisation o thcean.

In our study we implement LS| under scenarios in which obsgfwnobserved model
domains are represented by entire model compartmentsisisithation LS| propagates
observational information across model compartmentsghvis an implicit goal of cou-
pled data assimilation schemes. Very advanced schemeemjiloy a time-dependent
error covariance matrix.



Chapter 3. Methods: A research test bed for the initialisedf s2d prediction 39

3.4.2 Exploring the Parameters Uncertainty (EPU)

Under the assumption of unbiased observations, and usrfgaimework set in Sec8.2,
we show in Sect3.2.1that biases in the forecasts are caused by model deficiemuigs
In our online drift correction approach, we focus on moddiaiencies related to errors
in the model parameters alone.

In Sect.3.2.1we found an expression for the evolution of the bias:

t
: — F
ePa(t) = ef(t) » f Mt,ri—ﬁlx,mdr (3.23)

to

The approximation in Eg3.23is due to the assumption of linearity. In realistic applica-
tions it cannot be solved, because the dimensions of the Isiou®lved are huge. We
can expand EqB.23in a Taylor series up to the first order in time. Then,

ePas(t) ~ fs_ima/l[t — to] (3.24)

Eq. 3.24represents an approximation of the bias over a short tineeviat The accuracy
of the approximation will depend on the time duration of timear regime that is pro-
portional to the largest (in absolute value) Lyapunov exgof the dynamicsNicolis,
2003.

The principle behind EPU is to subtract short time estinmeiof the bias, using E}.24
successively over the entire forecast run:

- oF
Xun(ti) = Xiun = X-f - Q-blas =X — CiATBias =X — 5_/1|Xi—l,/16/liATBiaS (325)

wherex"" represents the correctemhbiasedforecast stateATgi,s Signifies the bias cor-
rection time intervalf; = iATgijss fori = 1,2, ...; and the compact form(t;) = x; is used
to simplify the notation. The parameter veciias fixed over the entire model run, big;

is the sampled parametric error at tie

Equation3.25introduces the operat@; = %lxi_ué/li. Its first term% describes the func-
tional dependence of the model on the uncertain parametkish changes with the state
of the model. Thus, it is a rectangular matrix projectinggpaetric error into the phase
space of the model, with rows and columns correspondinggdlitimnensions of the state
and parametric error respectively. It can be computed atiarg/along the model inte-
gration, constrained only by the model’s dimensionalitgase of large systems.

The second term of the operatorrelates to the parametric error vecaédr It is by nature
unknown, and is sampled from the range of uncertah®Xy= (Anyin, Amax), that we assume
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to have been identified, according to

U@, Amax— ), ifA>2A
6 — . —

where the index is associated with successive time intervals iATgjas fori = 1,2, ...;
U(a, b) is the uniform distribution in the intervaé(b); 4 is the mean value of the range
AA. A plays the role of the “most probable” parameter, where inctme ofd > A the
parametric error is sampled as positive, andfct A it is sampled as negative. Its role
is to discriminate between over- and under-estimation efuihknowna™. However,
A"+ Ain general, so that the above guess strategy might errolyeselsct positive or
negative errors.

3.5 The idealized coupled model

We base our experiments on an idealized coupled model itemtibyPefia and Kalnay
[2004. Three versions of the Lorenz 3-variable modebienz 1963 are coupled in
order to mimic the behaviour of subsystems of fast and slme 8cales:

d

d_>:9 = o (Ye — Xe) — Ce(S % + k1)

dye_ S k

o = Xe Ve~ XeZe + Ce(S Y + ka)

dz

a—xe)/e_bze

dx

Tp = 0= %) — (S X+ ko) - Ca(S % + ka)
% =X = Yo = %Z + (S Y+ ko) + Ce(S ¥ + ki) (820
d

d_i‘:xtyt—bzﬁczz

‘:j_>t< = 7 (Y = X) = c{x; + ko)
%_T:T(rX—Y—SXZ)+C(yt+k2)
dd—f:T(SXY— bZ) - ¢,z

The capital letters represent the slow system referred tbeSocean”, and the lower
cases represent variables corresponding to the fast comgoas referred to as the “ex-
tratropical atmosphere” (denoted with a subsag)nd the “tropical atmosphere” (with
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subscript). oo = 10,b = 8/3, andr = 28 are the standard values of the Lorenz systgm;
is the coupling strength of the “extratropical atmosphevigh the “tropical atmosphere”,

c is the coupling strength of the “tropical atmosphere” witle t'ocean” in thex- and
y-variables, ana, the coupling strength of the “tropical atmosphere” with theean” in
thez-variablesk; = 10 andk, = —11 are “uncentering” parameters introducing a phase
lag between subsystems, aBdandr represent spatial and temporal scaling factors re-
spectively. Note that when= ¢, = 0, the original Lorenz model is recovered.

The slow feature of the “ocean” idfectuated by setting = 0.1. In accordance with
[Pena and Kalngy2004, the spatial scaling factor is set ®= 1. However, the relative
amplitudes of the compartments are characterized by thafgpealues of the coupling
parameters in spite of the unit scaling factor. The choiae-et, = 1 results in a strongly
coupled case reminiscent of the tropical El Nifio-Southesnilation (ENSO), in which
the “slave” “tropical atmosphere” has a small amplitude andergoes regime changes
clearly modulated by the slow “ocean” compartment. Theraxopical atmosphere” is
weakly coupled¢. = 0.08) with the “tropical atmosphere” component of the “ENSQO”.
The model integration is carried out using a second ordegBdfutta scheme with time
stepot = 0.01. We establish a time definition on the basis of the duraifan ocean cy-
cle, so that one “year” corresponds to 240 time steps. Thelated “ENSO” is the defin-
ing feature of our model, on the basis of which we expect tesskbng-term predictabil-
ity. Our time definition is connected to this feature throtigé cycles of the “ocean”.
Figures3.1(a) 3.1(b) and 3.1(c) display the attractors of the “ocean”, “tropical atmo-
sphere”, and “extratropical atmosphere” respectively.esehhave been obtained after
omittance of a long transient spin-up and visualizing fdggar’-long trajectories in
phase space. The “ocean” oscillates between a “normaltedasting typically three
to twelve “years”, and an “El Nifio” regime lasting only one€ar”. The “tropical at-
mosphere” is visibly faster with a smaller amplitude. Thgtfatropical atmosphere” is
close to the characteristical Lorenz model due to its weakt&gropical” coupling. Figure
3.1(d)displays the time series of thevariables of all three compartments, illustrating the
differences in scale as well as frequency between the slow;dangdtude “ocean” and
the faster “atmospheric” compartments.
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Figure 3.1: (a)-(c): Attractors of the 3-component coupled system. ¥hg- andz- axes
correspond to the same variables. The “ocean” (a) is styocmlpled to the “tropical
atmosphere” (b), which in turn is weakly coupled to the “aktpical atmosphere” (c).
The time series of the-variable of all three compartments are plotted in (d).
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3.6 Experimental Setup

Our experimental setup is based on the standard obsensts@m simulation experi-
ment (OSSE Bengtssoret al,, 1981)) configuration in which the simulated nature evo-
lution is sampled at discrete times to generate the serissmflated observations. The
idealized coupled model specified in SE&6is integrated over an initial period of 60 000
time steps in order to reach a state on its own attractor. génsd is also called the spin-
up. Starting from the new initial condition given after th@rsup, the model is integrated
over a trajectory of forty “years”. This trajectory is assagl the role of “the nature”,
which will be targeted by the predictions. Thus, the natangrescribed by a matriX of
the dimension % 9600, its rows and columns determined by the number of viasaind
time steps respectively. For any stafé' of the naturex™ € N, withi € {1,...,9600,
[x™] = [9 x 1], ands; signifying that the vector belongs to tite column of the matrix.
Values for the “observations” of the variables are generatesampling the nature tra-
jectory and then adding a Gaussian white nefsavith zero mean and standard deviation
vectoro® € N(0,0°). o° is set to a percentage of the system’s natural variabilitf) w
dimension §°] = [9x1]. The observations are distributed homogenously evenyithi’,
i.e. every twenty time steps, for the first thirty years. They prescribed by the matrex

of dimension 9 360, and given by ¢ O, with | € {1, ...,360} and [y = [9 x 1].

We can now make a prediction of the nature by running the dycalmystem starting
from an observation. In order to simulate the fact that réalate models are imperfect,
we introduce errors in the idealized coupled dynamics glweieq. 3.26 and refer to
these as erroneous models. Erroneous models are genénategh the misspecification
of the “tropical” coupling parametersandc,, or the forcing parametar. Note thatr
plays the role of the Rayleigh numbe&tfogatz 200Q, which is an important parameter
describing the balance between bouyancy force on a pocKaiidfas a result of ther-
mal expansion with the loss of energy to thermdidiion and viscosityHlilborn, 1994.
However, it is directly connected to the temperaturgedence between the bottom and
top of the convection cell described by the Lorenz equatjéhiborn, 1994. A larger

r corresponds to a largerftiBrence in temperature, i.e. a larger forcing. Both coupling
parameters are sampled from the range d {01.5) with step 01, and the forcing pa-
rameter from (29- 68) with step 1.

Similarly to the nature trajectory, a control run is obtair®y integrating the erroneous
model for forty “years” after a spin-up period. The controhrrepresents a reference
point with regards to the assessment of forecast improveaftar initialisation. It also
gives the background state of the systéwhich is needed if the system is only partially
initialised.

Following the typical hindcast format of climate predictistudies (see FigB.2 or Sect.
2.5), ten-“year” predictions are made every “month” over thilgears”, summing up to
a total hindcast period of forty “years” coinciding with tlength of the nature trajectory.
The predictions are initialised using the “monthly” obssienal information according
to either FFI or Al, comprising a total of 360 start dates. Torecasted trajectories are
prescribed by the matrik?, where the subscrift specifies the erroneous model, and the
superscripp = 1, 2, ..., 360 signifies the associated start date. A forecast stateds gy
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Figure 3.2: Schematic of the experimental setup in phase space. Thevabses (red
crosses) are sampled each month from the nature (greeralkedised to initialise the
forecasts (blue lines). The model control run is shown (gedime) systematically below
the nature, indicating a model bias.

X; € Ff, with j € {1,...,2400 and ;] = [9x 1]. In the case of a fully initialised system,
the observation operator is given By= | and [H] = [9 x 9]. If a single compartment is
initialised, its dimension reduces thH] = [3 x 9]. The model biaseldx™ - y° needed for
the Al scheme (Eg3.15 are estimated using the sample of 360 observafistest dates,
as well as the corresponding sample of the control run.

The model errors lead tofiierent forecast biases, allowing for a kind of scenario @ntr
of models. An important constraint for the sampled paraimetrors is the similarity
of the stability features with those of the nature. The samphodels must be suitable
representations of the nature on some specified level. &hed is given by the degree
of instability of the model compartments, which is reproeldi®y the positive Lyapunov
exponents of a dynamical system. The instability featufesdynamical system give a
notion of its predictability. A fair assessment of the refatforecast skill of Al and FFI
with respect to the model bias requires similar prediciigtulf the models involved.

The nature has two positive Lyapunov exponemf§, = 0.9063 0.3150. A total of 109
erroneously coupled models are sampled according to tlzemeder range given above,
and under the constraint of having similar positive exptsieWe refer to this set of mod-
els as{c, ¢,}-models. The forty erroneously forced models are referoedstr-models.
See Sect3.8for the analysis of the stability features of the selectedrexous models.

3.7 Measured quantities

3.7.1 Verification of forecast skill

The field of climate prediction is populated witHiiirent types of skill scores$n Storch
and Zwiers 1999. The phase space of our deterministic coupled model isicaanh,
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allowing us to use a skill measure based on the distance aiitiedized model trajectory
from the nature trajectory. This distance is given at a giad time as an average
root-mean-square error (RMSE) over all variables, wheeeRNISE of the variables are
normalized with respect to their natural variances in otdegiccount for dierences in
amplitude:

9 PR 9 f nat
RMS Eult) = 3\ (t))z/g = J KO -X (t))z/g (3.27)
i=1

(O.i)z — (O.inat)Z

wherei = 1,...,9 indicates the variables, and the overbar indicates thenroeer the
sample of predictionginitial conditions. Recall that in Anomaly Initialisatidhe bias is
added onto the observations, i.e. the initial distance @ontture trajectory is larger. In
order to facilitate a fair comparison between Al and FFl,debiasthe total RMSE given
in EQ. 3.27by subtracting the bias (E®.4in vector notation):

9 f ias
J (e (t) — &2(t))2 /9 (3.28)

RMS Ht) = RMSESt) = > ()2

i=1

The root-mean-square skill score relates the forecastsldlreference skill given by the
non-initialised model control run, i.e. the background:

RMS E (1)

RMSS ) = RMSS §1(t) = 100(1— RMS B(t)

) [%] (3.29)
An RMS S &) > 0% means that the sample of 360 initialised predictions ke#sskill
than the equivalent sample of non-initialised predictions

3.7.2 Quantifiers of model bias and drift

We have defined the bias as a mean error, and the drift as teed@nivative thereof, in
Eq. 3.4and3.5. Our analysis is performed on the basis of the biases ofesiragiables, as
well as a global quantity describing the total model bias Wadefine as th®&MS Bias
The RMS Biasis computed by taking the average of the root mean squdaierehces
between the model control run and nature means over allblasanormalized by their
own variances. It describes the mean size of the bias oveinalinormalized variables of
the model.

RMS Bias= Zg:

i=1

()—(:) _ )—(inat)z
- /9 (3.30)
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Such a “global” measure of the bias of a model allows for a thre@mparison among
models with respect to a single indicator. It can be intdgatas the total shift in phase
space of the centre of the model’s attractor with respecatore, impartial with regards to
the contribution of each variable independently. RS Biasoincides with the global

normalized bias for large lead times:

i 9 elbias(t)Z
tI—To I (O.inat)z

/9 = RMS Bias (3.31)

For our purposes a quantification of the drift becomes reledumerically, we calculate
the drift of a variabled, by taking the absolute value of the bias within a time pefigd
while respecting its sign and dividing by the lead time agged with this valuet,y.

maxePas(t = 0 : Ty)|

drm = +

(3.32)

tmax

Drift can occur slowly over s2d time scales, or very rapidiyhe form of an initialisation
shock occurring due to inconsistent initial conditionshwiéspect to the model attractor
[Magnussoret al, 2019. The time scale with respect to which drift is investigated
determined byl .

3.8 Stability analysis

The stability properties of the erroneous configuratiorscantered on the computation
of their spectrum of Lyapunov exponenjgfori = 1,2,...,9. The Lyapunov exponents
of a dynamical system are quantities that characterizditlear rate of separation of
infinitesimally close trajectories (see also S&cP). We now introduce a definition of the
Lyapunov exponent given i@tt [2004, followed by a more conceptual understanding
given inKalnay[2003.

The linear evolution of a perturbatiag = 6z, is given by

Z(t) = My, - 2o (3.33)

whereMy;, = exqft: %&)dt is the tangent linear model @ropagator z(t)/|z(t)|
gives the direction of the infinitesimal displacement ofttlagectory fromx(t), and|z(t)|/|zo|

is the factor by which it grows or shrinks.
For initial conditionxy and initial orientation of the displacement given iy = zy/|zo|,
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the Lyapunov exponent is defined as

1 1
v(Xo, Ug) = t“_To T In(1z(t)l/120]) = t||_)n;l() n IN[M¢y, - Uol (3.34)

Assume an initial arbitrarily small sphere of perturbasohvolumeV within the phase
space of am-dimensional dynamical system. These are subject to anteolaccording
to the model equations. If the system is unstable with readpemy axid, then the sphere
will undergo growth along the axigroportional toe”t. An n-dimensional system is thus
characterized by Lyapunov exponents. The total volume of the spheteat timet will
be given byV grit-+mlt,

By convention, the spectrum of exponents are aligned asuwptd y; > y, > ... > y,.
Therefore, if a system is unstable, at least the first Lyapuexponent is greater than
zero,y; > 0. Moreover, a Hamiltonian system in which the total enesgganserved
is characterized by ,y; = 0. For dissipative systems, the total sum of the exponents
is negative X' 1y < 0. In this case the total volumé¢ approaches zero volume, i.e.
dim[V] < nif the system isn-dimensional Kalnay, 2003. Note that the initial sphere
V in the phase space of an unstable dissipative system willewuato an ellipsoid after
a short time. The sphere grows or decays linearly along efttiem axes in the initial
linear phase. For long times, the growth along the unstatde eontinues, but the axes
are bounded by the volume approaching zero. As a conseqguaribe longer nonlinear
time regime the axes of the ellipsoid fold in phase spacéordisg into a banana shape.
This occurs over and over again, so that after an infinite ,tithe original sphere has
evolved into a structure of zero volume given by the strarigacior of the system. The
dimension of this fractal structure has been estimatelddplan and Yorkg1979 to be

d=Kk+ (y1+ .. + v)/Iyxs1l (3.35)

where the sum of the firdt Lyapunov exponents is positive, and the sum of the first
k + 1 exponents is negativ&alnay, 2003.

In our experiments, the positive Lyapunov exponents desdrby the nature are given
by y74 = 0.90630.3150. The code for calculating the Lyapunov exponents was pr
vided to the author by his supervisors. Autonomous dyndnsigstems have at least
one exponent equal to zerkdlnay, 2003, coinciding with our third exponeng; = 0.
This can be understood by considering the specific case ofleparate initial condi-
tions on the same model trajectory, that on average haveatme slistance from ea-
chother. The dissipation of the system is given by the sunhefrnine Lyapunov ex-
ponentsz? .y = -2859. This can be verified by calculating the divergence of the
system Kalnay, 2003, divF = =2(c+ 1+ b) — (0 + 1+ b) = —285; the small diference
between both values is due to numerical error.

We have selected a sample of coupling configurations {¢.e,}-models and-models,

on the basis that these reproduce similar stability featgreen by the nature. This is
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Figure 3.3: Characterisation of the configurations using Lyapunov egpts. (a) For
{c, c,}-models: Distributions of the nine Lyapunov exponents. Kbj r-models: Lya-
punov exponents as a function of the
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Figure 3.4: Distributions of the Kaplan-Yorke dimensions and the giason (top left
and right) for{c, c;}-models. Kaplan-Yorke dimension and dissipation (bottefh and
right) as a function of.

based on the assumption that real climate models are ingbdotd reproduce the general
behaviour of nature. The nine Lyapunov exponentgdoc,}-models are given as distri-
butions in Fig.3.3(a) We can see that the first exponent varies only in the secomtbe
after the decimal, in contrast to the second exponent slgpehanges of above 50% for
some configurations. This suggests that the first exponprésents the instability in the
“extratropical atmosphere”, which is subject to a weak asrdectly reproduced coupling
parameterce = 0.08. The distribution of the second exponent is centered tadouean
of y; ~ 0.2, smaller than in the nature. We also observe that aboubhéfie configu-
rations have a third exponent equal to zero, and the restdaesitive, but small third
exponent. Configurations that have a non-zero third exgdrees@ a zero fourth exponent
(not shown).

In order to highlight the trend as a function of the errondousing forr-models, the val-
ues are displayed with respecttd-ig. 3.3(b) We observe an increasing trend for the first
two positive exponents with respect to the forcing, indiggt faster rate of divergence
of initially close trajectories. We further observe thanakt all models have a positive
third exponent, and of significant value larger thah for very larger. The increased
instability of the erroneously forced configurations sfgs a decreased predictability.
Figure3.4displays the distributions of the Kaplan-Yorke dimensiand the total sum of
the Lyapunov exponents (top left and right panels, respagifor {c, c,}-models, as well
as their dependence on the erroneous forcing{models (bottom panels). Féc, c,}-
models, the attractor dimensions vary within the range.8f-56.6, and although the
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dissipation rate appears bimodal, it varies only in the sdamumber after the decimal.
Forr-models, both quantities show trends with respect to tharigr The dissipation rate
of the models decreases, the attractor dimensions increase

3.8.1 Computation of Lyapunov exponents

In the following we describe the technique for numericaliycalating Lyapunov expo-
nents of chaotic flows given yenettinet al.[198(J. We first consider the first exponent
v1. Choose an arbitrary perturbatiap and iterate it for a long time using the tangent
linear model. Theny; = lim,_ .. % In(|znl/1zo)| wheren resembles thath iteration. If

v1 > 0, |z,] typically becomes so large resulting in computer overflonisTs overcome
by normalizing|z| periodically at times; = it fori = 1,2,... wherer is a fixed small
time interval. The magnitudeg used for renormalization are stored in order to obtain
the largest Lyapunov exponent:

1= lim k—lTZik:lInai (3.36)

In practice k is chosen sfiiciently large after which convergence within an acceptable
tolerance has been reached. How do we know that we have cediing first exponent,
and not any other? First of all, the initial perturbation miave a component in the
direction of the instability associated with the first expoh Second of all, the rate of
change associated with the first exponent is largest, sdahbing integration times, the
direction of the instability converges towards the Leadigigpunov Vector.

The calculation of the remaining exponents is done as fald®ecall that the sum of the
Lyapunov exponents describe a rate of change of a volumeasgapace. Thus, by keep-
ing track of the evolution of a volume in phase space througleassive renormalization,
one can infer the sum of the exponents. The second exponeoiiguted by evolving
a paralelogram initially spanned by two independent aabjtperturbationszl| and|z3|.
The iterated vectorigy| and|z)| span a paralelogram of aréa. The area will be distorted
in a way thatA, o« exgn(y1 + y2)]Ao, SO that we have

1
yityz2= lim - IN(An/Ao) (3.37)

As with the calculation of the first exponent, the areas massiiccessively renor-
malized in order to avoid computer overflow. However, notyahe magnitude, but the
orientation of the iterated vectors is a problem for largeets, as they become more coin-
cident in the direction of dominant growth. Hence, the ppagisuccessive normalization
procedure is generalized so that at each tifrtbe evolving pairs of vectors are replaced
by two orthonormal vectors spanning the same two-dimeasisnbspace after Gram-
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Schmidt orthogonalization. We then obtain

1
71+ 72 = lim Eig‘zllnai(z) (3.38)

WheI’EQ'i(Z) is the paralelogram area before normalization at timey, can now be
deduced from Eq.3.38and prior calculation of; using Eg. 3.36 The remaining ex-
ponents are computed in the same way by choosing the dinmeaktbe initial volume
accordingly. The calculation of any Lyapnov exponent cagdrgerally expressed as

1
y = lim EZ!(zlln(ai(l)/ai(l_l)) (3.39)

See alsdtt[2007.






4 Results

Our results are divided into two parts, according to our twaimresearch lines. The
relative performance of Al and FFI is studied with respedh®initialisation of diferent
model compartments (Secd4.1.]), different observational error scenarios (Settl.?,
different model bias scenarios (Sedtl.3, different drift scenarios (Sec#d.1.4, and
with respect to the dlierences between model and nature attractors (84ch. The last
three sections (Sect.1.34.1.5 are related to dierent model parametric error configura-
tions. Part two investigates the performances of LSI (S&&.1) and EPU (Sect4.2.2.
Either the RMSE or the root-mean-square skill score (RM&@&ysed to verify forecast
skill. Both are debiased for fair comparison. Their defons can be found in Ed3.28
and3.29respectively. We also quantify the “global” model bias gsineRMS BiagEqg.
3.30), and the drift using E¢3.32

We refer to erroneously couplgétbrced models a&, c,}- / r-models (Sect3.6). Note that
the “extratropical atmosphere” is hardlffected by the miscoupling (i.e. almost identical
to the nature) folc, c,}-models, but it difers from the nature far-models. In order to
simplify our analysis where necessary, we use example agatigns that represent the
general behaviour of the majority of the configurations. Sehare{c = 0.8, ¢, = 0.9} and

{c = 0.3,¢c, = 1.2} for {c, c,}-models, corresponding to an average and a very large value o
theRMS Biagespectively. The positive Lyapunov exponents for eitlugrfiguration are
v12 = 0.90360.1895 andy;,3 = 0.90320.2162 0.0153, respectively. Compare these
values to those of the naturg)d’ = 0.9063 0.3150. The second configuration has addi-
tional third positive exponent.’ Examplemodels are given by = 34, 68, corresponding
to small and larg&MS Biasesand are discussed in the text where necessary.

Unless specified otherwise, and apart from Sdcl.2in which the observational error
scenario is varied, the observational error standard tiemi#s set too® = 2.5%. The
results of Sect4.1.1 4.1.2 4.1.3(in part),4.2.1, and4.2.2can be found inCarrassiet
al., 2014.

4.1 Research line 1: Relative performance of Full Field
and Anomaly Initialisation

4.1.1 Initialisation performance with respect to differen t model
compartments

We begin by assessing the performance of Al and FFI for thialisiation of single com-
partments. In Fig4.1, the RMSSS of Al and FFl is displayed as a function of lead time
for both example configurations after a “monthly” averagihgtialisation is carried out

53
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either in the full system (black), the “extratropical atrpbsere” alone (blue), the “tropical
atmosphere” alone (magenta), or in the “ocean” alone (greEme first point is that by
far the largest prediction skill is obtained when the systerully initialised. For sin-
gle compartments, it does not exceed 20% significantly, edeefor the full system the
same level of skill is reached after the 20th “month” (FFI}lee about the 10th “month”
(Al). Initialising only single compartments, the largestwaell as the longest prediction
skill is obtained for the “ocean”, with similar performanig both Al and FFI. For time
horizons larger than 40 “months”, the skill scores for thiéyfinitialised system and the
system initialised with the ocean alone converge, illustgghow the system’s memory is
efficiently stored in its slowest compartment. The total maximfarecast skill for long
time horizons does not, however, exceed 5%.

When the “extratropical atmosphere” is initialised, weenve a distinct dterence in the
performance of Al and FFI. The longer skill after Full Fiekitlalisation suggests that
the initial error is diciently reduced. The “extratropics” represent the commparit with
the largest instability and fastest error growth, and redythe initial error helps delay
the skillful forecast horizon. In the “tropical atmosphevwee do not observe a skillfull
performance after either Al or FFI, which suggests that tinenger coupling with an
uninitialised ocean counteracts a reduction of the in@rabr.

Overall, the “ocean” component is indispensable in ordeetain some forecast skill for
time horizons longer than 40 “months”. On short time scabedy initialisation of the
full system results in skill larger than 20%.

4.1.2 Initialisation performance in the face of observatio nal error

One might guess that, as a general rule, a reduction of thenadignal error will lead
to a better forecast. This is certainly true for the ideakoafsa perfect model, in which
forecast errors will in fact only come from imperfect inltieonditions, i.e. a limited
observational network and observational errors. A perfemtel with perfect initial con-
ditions will lead to a perfect forecast for all time. In priaet, the forecast time horizon for
which an improvement in the initial conditions of the preatio will lead to an improve-
ment in forecast will depend on the growth rate of randomrernehich is connected to
the positive Lyapunov exponents of the model replicatingirea(see SeceR.3).

In the case of Anomaly Initialisation applied in a “real”wstion of an imperfect model,
the bias is added onto the observations in order to apprda&ithe model attractor. If
the bias is significantly larger than the observationalreoor original assumption that a
reduction of the observational error will result in an impement of the forecast might
not hold. In Sect3.3.2we derived that foe’s >> ¢° as in the case of real applications,
the mean analysis error of Al is less sensitive to the obsena error in comparison
with FFI.

Figure4.2 shows the RMSSS of both algorithms as a function of the olasienal accu-
racy for six forecast horizons, full observation of the syst and the example model of
{c = 0.8,c, = 0.9}. We observe that the forecast skill after Full Field Ini8ation deterio-
rates for large observational error scenarios, whereashaholnitialisation is insensitive
to the observational error. Take note of how FFI's advantage Al decreases for larger
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Figure 4.1: RMSSS as a function of the forecast lead time for FFI (leftgdgnand Al
(right panels). Top Bottom panels refer to the configuratiofs = 0.8,c, = 0.9} /

{c = 0.3,c, = 1.2} respectively. Diferent colors represent initialisation of the full sys-
tem (black), “ocean” (green), “tropical atmosphere” (matg¢ and “extratropical atmo-
sphere” (blue).

forecast lead times, eventually yielding to Al for the losggrecast horizon. The ini-
tial rapid decrease of this advantage is due to fast lossibffiskn the “atmospheric”
compartments that are better initialised with FFI. Thedjiig to Al for the longest fore-
cast horizon is due to a better performance of Al in the “ot@&amur example model,
and is in line with the findings ofoth and Pefi§2007, in which their simple mapping
algorithm identical to Al results in slower error growth. rHarge observational errors,
Al improves over FFI at an earlier forecast horizon, seertherforecast horizon of 4-5
“years” in Fig. 4.2 The large observational errors result in a faster errowtroate for
FFI and an earlier yielding to Al.

4.1.3 Initialisation performance in the face of model bias

In the following section we assess the performance of batialisation algorithms as a
function of the model bias. Introducing parametric erromiset of nonlinear coupled
differential equations results in unforseeable dynamicalg#gmm the system. We have
described in Sect.3.8 the analysis of the stability properties and changes imaettir
structure of the dferently coupled forced models discussed here.

Figure4.3(a)shows the RMSSS for both algorithms as a function ofRiMS Biasfor
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Figure 4.2: RMSSS as a function of the standard deviation of the obdenadterror,
o°, expressed as a fraction of the system’s natural varigbilihe model configuration
corresponds t¢c = 0.8, c, = 0.9}. The six panels refer to six flierent averaging periods
and are indicated in the corresponding labels. FFI (blag) JiAl (red line).

erroneously coupled modelgc(c,}-models) and for the same six forecast horizons as
before. Overall, but especially in the initial stage of tloeetast, the performance of
FFI shows little relation to the nominal size of the modelsbidhe performance of Al,
on the other hand, shows a clear dependency on the model thas the first forecast
“year”. Although for each model FFI performs better than éd fhe first forecast “year”,
both algorithms appear to converge after the second leaa™y€elhis points towards
comparable skill in the “ocean”, which accounts for mosthad forecast skill after the
first forecast “year”. We cannot, however, confirm a syst&naelding of FFI to Al

for long time horizons as we did previously in our example glod figure4.2, even in
scenarios with larger observational errors that wouldrf@io

Figure 4.3(b) shows the RMSSS as a function of tRMS Biasfor parametric model
error inr, which we refer to as-models. Here we find the opposite behaviour to what
was observed for erroneous coupling parameters. Al owtped FFI for short lead times
and for a progressively larg&MS Biasassociated with larger. This improvement is
marginally observed for the second and third forecast “yedefore converging to zero
in the fourth and fifth “years”.

In Sect.4.1.2 we observed that FFI improves after an improvement of tisedational
network. Here, with regards to the performance of Al, we oleséwo cases. The first
in which Al improves only after improving the model (Fig.3(a). The second in which
the performance of Al appears to be independent of the madiency (Fig.4.3(b)).
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The diferent behaviour of Al in Fig4.3(a)and4.3(b)is connected to the flerent types
of model error, and motivates the following analysis.

4.1.4 The role of the initial shock with regards to performan ce

Figure4.4illustrates, using specific, ¢c,}- andr-models, how the normalized mean fore-
cast error, i.e. normalized bias, evolves over the coursleeopredictions for the variable
z in ther-models, and the variabbe in the {c, c,}-models, which have been chosen here
for their larger magnitude in comparison with the remaimnuagiables. First of all, we
observe a dferent drift behaviour, given by the slope of the bias shown different
parametric errors. Fdc, c,}-models, the drift is considerably slower, occuring overgo
time scales. For-models, an increasingly large initial peak occurs for éang repre-
senting a rapid initial adjustment of the model to the ihitianditions. This rapid initial
adjustment is reminiscent of the initialisation shock tisadften observed to follow ini-
tialisation Magnussoret al,, 2013. We also observe that the bias increases for larger
too.

We attempt to quantify the drift described in E2332in order to investigate a relationship
between forecast skill and drift. The drift analysis in&@fVy is set to one “month”. One
might object that the interval of one “month” is too small tm¥ple the drift evolution.
On the other hand, take note of how within the first “month” tekative performance of
Al / FFl is already determined for the remaining time horizorgs jostifying this focus
on the initial stage of the forecast. Furthermore, invesing the drift within the first
forecast “month” allows us to concentrate on the time saakvant for the initialisation
shock observed above (Fig.4) for ther-models.
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Figure 4.5: RMSE ratio of Al/ FFI (colorbar) for all nine variables as a function of the
bias on the y-axis and the initial drift on the x-axis. (a) E@oloured point in a single
panel corresponds to one of the 1@9c,}-models. (b) Each coloured point in a single
panel corresponds to one of the 4finodels.
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Figure4.5(a)shows the RMSE ratio of Al to FFI foft, c,}-models with regards to both
the normalized bias, on the y-axis, and the initial drift tbhe x-axis. Instead of using the
RMS Biaswe plot the bias for each variable individually. Each co&mlipoint within a
panel corresponds to a single c,}-model, making a total of 109 points in each of the
nine panels. The colour blue relates performance more wufaef Al, and the colour
red is more in favour of FFI. Take note of thdférent scales for each colour bar. Note as
well that all ratios are above the value of one, establiskiRks better performance over
Al for all {c, c,}-models.

Figure4.5(a)shows a dependence of the relative skill of Al and FFI on thdehbias, as
well as an independence on the initial drift. This is visiioléhe vertical colour gradient
for each variable. For large positive or negative biasesratio is more in favour of FFlI,
corresponding to yelloyed colours at the “bottom” or “top” of each single scattestpl
and blue colours in the centre of the scatter plots arourml@es. No particular relation-
ship can be observed with regards to the initial drift, witiseption of thez-variable, in
which a larger drift corresponds to ratios in favour of FFI.

Figure4.5(b)is identical to the previous figure, but shows the RMSE ratiélao FFI
for the 41r-models. Note how the colour scales have shifted to valulesvbene, corre-
sponding to a better performance of Al as observed prewondigure4.3(b) The most
important feature we observe is a strikingly clear relaglop between the initial drift and
the relative performance of Al and FFI, evident in the homizd colour gradient. With
increasing positive or negative drift, the colour ratioamte from red to blue, with only
a few exceptions to this general trend.

We also observe that fermodels, thex- andy-variables have smaller biases, but a larger
initial drift compared to those of thi, ¢,}-models. On the other hand, tkevariables
show very large biases, making it apparent that RS Biasfor r-models in figure
4.3(b)is due mostly to the large biases in thgariables. One might infer that the large
bias in thez-variables induces an initialisation shock that is manifesa large initial drift
also in the remaining variables. If we calculate the initiaft in the same way but over
a three “month” period, we find that for the “atmospheric’andy-variables the large
initial drift even changes sign (not shown), indicating aragc behaviour that further
supports the hypothesis of a dynamical shock mechanismdiitie@f the z-variables is
exemplified in Fig.4.4, showing an initial monotonic “surge” towards a peak lardpan
the mean, followed by a compensatory oscillation.

We have so far observed that Anomaly Initialisation fails tiee erroneously coupled
models, but succeeds for the erroneously forced models (Eig). The analysis of
the initial drift has indicated that an initialisation stkoaccurs forr-models, which Al
successfully counter-balances. In the following secti@nleok for further evidence by
visualising the respective model and nature attractors.

4.1.5 The role of the attractor

In order to investigate our hypothesis that Al outperforr$ il the face of an initialisa-
tion shock, it helps to visualise the model and nature atira@nd observe the predicted
trajectories after initialisation. We have seen that thigailshock occurs for errors in the
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Figure 4.6: Three-dimensional view of the “extratropical” attractafsthe model (red)
and nature (blue) for = 68 (left panels) and = 34 (right panels). Top panels show the
initial conditions of Al (black triangles) and FFI (greemast). Middle panels show the 1-
“month” predictions initialised with FFI. Bottom panelsasi the 1-“month” predictions
initialised with Al.
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forcing, which is why we first focus onnmodels. The top left panel of figue6displays
the 40-“year’climatologicaltrajectory (i.e. model control run) of the “extratropicéiren-
sphere” of an examplemodel in red { = 68), along with the simulated nature in blue.
The case = 68 shows the largest bias among all thmodels considered. The green
stars depict the monthly sampled observations that comfires360 initial conditions for
FFI; the black triangles depict the initial conditions for. A

First of all, we observe similarity in shape between the nhadd nature attractors. The
model attractor dfers in a larger variance accounting for its larger size vapect to the
nature, as well as a “translation” along thexis in phase space that comprises its bias.
We have depicted the “extratropics” for easy visualisatlout the behaviour is qualita-
tively the similar for the ttropical atmosphere” and “ockaithe figure illustrates how
Anomaly Initialisation constitutes a “translation” of tlset of observations closer to the
model attractor.

The middle and bottom left panels of figuté show the one “month” long predictions for
FFI and Al respectively starting from the initial conditedisplayed in the top left panel.
Clearly, initialisation further away from the model attiacin the case of FFI results in the
systematic favoring of trajectories along or even outsiidhe “wings” of the attractor.
The outer wings of the attractor can be considered as thelimoa®e “extreme climate”,
for the reason that it is both largest in amplitude, and ravé@hin the 40-“year” clima-
tological model trajectory, this region of the attractos loaly been visited once or not at
all. This serves as an extreme example of dynamical forecests resulting from drift
model error. In particular, the “overshooting” of the mearmeof thez-variable observed
in figure4.4is a one-dimensional manifestation of the model's dynahuompensatory
response to an initialisation far outside the attractoteAAnomaly Initialisation (bottom
left), the predictions are clearly much more in line with thedel climate, and as a con-
sequence more in line with the natural climate after a biasection too.

The case in which model and nature attractors are as “far’din@y each other as they
appear for = 68 certainly seems unrealistic. Nevertheless, the righelseof figure4.6
depict analog behaviour for a model with= 34, which corresponds to a distinguished,
but smaller model bias, and for which Al still outperformd FFhe evolution of the mean
error of thez-variable of this model has been shown previously in figu#too.

Making clear inferences from visualising attractors of {t\e,}-models and their predic-
tions is more complicated. The individual attractor stwes diter significantly from one
another, and from nature. We are also restricted to theitabptmosphere” or “ocean”,
because the “extratropics” are ufexted by the errors in the coupling.

The top panel of Fig4.7 displays a single case for the example mddgt,} = {0.8, 0.9}
and nature attractors of the “tropical atmosphere” in retltzine respectively, along with
the initial conditions for FFI as green stars and for Al a<hklaiangles. The perspective
has been altered for better visualisation (compare with Bid). We observe a subtle,
but important diference between the model and nature attractors. One catifydermn
separate “regimes” for the nature, where one is more prarexlithan the other. The
model reproduces a similar structure, giving more weightéwer to the regime that is
less pronounced in the nature. This important, but comigicahange in attractor struc-
ture of the model can not be compensated by a translatioreaé¢hof observations as
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Al intends. As a consequence, the result after initialssatith Al is less consistent with
the model attractor. The bottom panel of Fiy7 displays the one “month” predictions,
showing how the weaker regime is “over-predicted” after Auady Initialisation.

Results show that Anomaly Initialisation has been desigoedmedy drift by translating
the set of observations closer to the attractor. The pretondor this approach to be
successful, however, is that thefdrence in the model and nature PDFs is mainly of the
first order. This might be the explanation for why Al perforpmorer than FFI for the
{c, c,}-spectrum of models, in which their PDFdt@r in higher orders than only the first
order, i.e. the bias.

4.1.6 Approximation of the model PDF

The objective of Anomaly Initialisation is to better appimate the model attractor. This
is intended by adding the bias to the observations distabub obtain a better represen-
tation of the model distribution. Figuee8(a)illustrates the probability density functions
(PDFs) for each variable for the nature (blue), and for o@ngxle model (red), which
is chosen here again to e c,} = {0.8,0.9}. Additionally, the distribution of the dier-
ences between model and nature PDFs is given (green), aasmék nature distribution
“corrected” by means of an addition of the bias of the vagdblack), from which the ini-
tial conditions for Anomaly Initialisation are sampled. i@paring the nature and model
distributions, we observe that in the “extratropical atpiee” they are almost identical,
which is expected due to the equal, weak “extratropicalpdiong in the model as in the
nature. In the “tropical atmosphere”, the nature PDF ismglwea bimodal distribution in
the x.- andy;-variables, for which one of the modes is more distinguighed the other.
The model PDF can be described in terms of a bimodal distobutver the same region
in phase space, but over-representing the mode that is wigalkee nature. Such a mis-
representation of the natural modes due to an erroneousimgupthe model results in
a clear bias. The initial conditions for Anomaly Initialtgan are sampled from the distri-
bution given by the addition of this bias onto the naturedbjaHowever, the distribution
gained from adding the bias onto the nature does not apped&ithe model PDF, as it
is intended to do. Thus, the initial conditions for Al are gd@d from a distribution that
much less represents the model PDF than the initial comditod FFl sampled from the
nature distribution. This is due to the fact that, althougdiifeerence in the first order
moments is present, and thigfdrence constitutes the bias, the addition of this bias onto
the nature distribution does not result in an adequate citore because the higher order
differences are not accounted for. In the “ocean”, the distabatfrom which FFl and Al
are sampled (blue and black respectively) are almost gnécgial, explaining the similar
performance of Al and FFI in the “ocean” as we have observethis example model.
Figure4.8(b)depicts the same distributions described in figu&a) but for an example
model with erroneous forcing of = 68. We can see that the distributions from which
FFI and Al are sampled (blue and black respectively) are senylar for all x- andy-
variables. The key dlierence can be observed in thgariables, for which a bias of the
model distribution with respect to the nature distribut®present. The distribution from
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Figure 4.7: Three-dimensional view of the “tropical” attractors of thr@del (red) and
nature (blue) fodc,c,} = {0.8,0.9}. The initial conditions of FFI (green stars) and Al
(black triangles) are shown in the top left and right panetpectively. The one “month”
predictions are shown in the bottom panels after FFI (left) Al (right). Note that the
perspective has been altered with respect to &igfor better recognition.



Chapter 4. Results 65
X y z —Nature
e e e —Model
0.06 01 0.06 Model - Nature
0.04 0.04 — Nature + BIAS
0.05
0.02 0.02
90 20 0 20 40 % 0 50 %o 0 50
X'[ yl Z'[
0.2
0.2 0.2
0.1
0.1 0.1
0 0 )
20 -20 0 20 40 20 -20 0 20 40 -50 0 50 100
X Y z
0.1 0.06 0.04
0.04
0.05 0.02
0.02
o0 0 0 50 100 T 0 100 200 T 0 100 200
(a) {c.cz} = {0.8,0.9}
X . —Nature
e Ve e —Model
0.06 0.06 0.06 Model - Nature
0.04 0.04 0.04 —Nature + BIAS
0.02 0.02 0.02
), A
% 50 fo 0 0 50 100 % 0 50 100 150
X'[ yl Z'[
0.2 0.1 0.1
0.1 JX\&'M\ 0.05 M 0.05 /\
Q - AN /
% 0 50 % 0 50 % 0 50 100 150
X Y z
0.06 0.015 0.015
0.04 0.01 0.01
0.02 0.005 J\ 0.005
. ) e e
oo ~100 0 100 200 T 0 200 400 S0 400
(b) r =68
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which the initial conditions for Al are sampled (black) appimates the model PDF (red)
much better than the nature distribution (blue) from whighinitial conditions of FFI are
sampled. This is due to the fact that th&eliences between the model and nature PDFs
are well-approximated in terms of afiirence in both first order moments. As opposed
to our previoug{c, c,} = {0.8,0.9}}-model, for this model the addition of the bias onto
the nature distribution can correct théfdrence in the first order moments, resulting in
a better approximation of the model PDF. This feature is mash distinguished in the
“ocean”, explaining why the better performance of Al ovet ¥ r-models is less pro-
nounced here.

In order to extend the analysis of the PDFs for all modelsy&dgud(a)displays the dis-
tributions of the bias fofc, c;}-models (blue) and-models (red) for all nine variables.
Figures4.9(b)to 4.10(b)follow in the same fashion, displaying the distributionstod
differences between the higher order moments of model and riie up to the fourth
order. Figure4.9(a)shows how the bias is comprised almost entirely inztvariables
for r-models, and more broadly distributed over the variablegda,}-models. Figure
4.9(b)shows how the variance of all variables of thmodels is very broadly distributed,
owing to the fact that the variance increases for an incrieaeecing. Figurest.10(a)and
4.10(b)show how the dferences in skewness and kurtosis are much more broadly dis-
tributed for{c, c,}-models rather thanrmodels. These results clearly confirm the findings
of our example models in the previous figude8(a)and4.8(b) The diferences between
model and nature PDFs f¢t, c,}-models occur not only in the first moment of the distri-
butions, but also in the third and fourth moments. Contyaidr r-models the dterences
between model and nature PDFs are generally well-appragaa the first order, ex-
plaining why Anomaly Initialisation is a promising altetine to Full Field Initialisation.
The fact that larger dlierences occur in the second momentrfonodels do not turn out
to be a disadvantage, because the larger variances of thelsrindrease the probability
that the initial conditions after Anomaly Initialisatiorillproject onto the model attractor.

It appears as if Anomaly Initialisation will work better winéhe projection of its initial
conditions onto the model PDF is successful. Similarity @fjability distributions can
be measured in terms of the Bhattacharyyditcient Bhattacharyyal943. The Bhat-
tacharyya coféicient is an approximate measurement of the amount of ovedapeen
two statistical samples.

BC(p. o) = Y /p()a(x) (4.1)

XeX

wherep andq are discrete probability distributions over the same don¥ai Therefore,
0 < BC < 1, where 1 corresponds to maximum similarity. Note thatefdistributions do
not overlap, the BC cdkcient does not distinguish between distributions “far” very
far” from eachother; both cases resultB€ = 0. We want to measure the similarity
between the model PDFs (p(x)) and the “corrected” distitimg from which the initial
conditions of Al are sampled (q(x)).

Figure4.11(a)displays the Bhattacharyya d&eient as a function of the bias f¢c, c,}-
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Figure 4.11: Bhattacharyya cd&cient measuring the similarity between the model dis-
tribution and the distribution associated with the initiahditions for Al, as a function of
the bias. Each point in a single panel corresponds to ong tfi€al09{c, c,}-models (b)
the 41r-models. Panels correspond to the nine variables as iedicat
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models, where every point in each of the nine panels correlspto a single model. In
the “extratropical atmosphere”, the d¢belent is equal to one for all models, because
both distributions are almost entirely equal due to the Etgxdratropical”’ coupling. The
remaining variables show a dependency of thefoment on the model bias. The larger
the bias, the less similar the model PDF is compared to thakdison from which the
initial conditions for Al are sampled. This shows that thetfarder bias correction behind
Anomaly Initialisation does not result in a good approxiimatof the model PDF as
intended.

Figure4.11(b)shows the same, but formodels. The Bhattacharyya dteient is much
less dependent on the bias of the model, clearly pointingutdsvthe fact that the model
PDFs are well-approximated by the “corrected” distribngio This result confirms the
discussion followed in Fig.4.9(a}4.10(b) Thus, Anomaly Initialisation succeeds for
r-models, because the first order approximation scheme anhtigel attractor through
addition of the bias succeeds. This success is due to thehf@icthe model attractors
vary from the nature attractor in terms of the first order, higgher order dierences are
negligible.

4.1.7 Summary of research line 1

With regards to our first research line, we have found thatHerinitialisation of single
compartments, the best performance for long time horizebiained when the stabler
component of the model, i.e. the “ocean”, is initialised vidg the slowest error growth
rate, the “ocean” behaves like the system’s memory. We Hawed@und that FFI depends
sensitively on the observational error, whereas Al is ngnigicantly improved when the
observational error is reduced. This is not surprisingabse the initial conditions error
of FFl is reduced for smaller observational errors, but utige addition of the model bias
as in Al, the initial error scales less with regards to theeobational error (SecB8.3.2.

The results investigating the role of the model on the ihs#zion suggest the follow-
ing interpretation. Al outperforms FFI farmodels, because a significant model bias is
present, and other relevantigirences between model and nature PDFs are limited to the
second moments. For FFI, the model bias incurs initiabsatiutside of the model attrac-
tor, to which the model’'s short-term response is a climateeexe, and resulting oscilla-
tions. This is a picture book example of shock-induced faseerrors, and is supported
by experiments in which the “perfect model” is perturbedtyaoducing an artificial bias
onto the observations, indicating a direct relationshigveen drift and perturbation mag-
nitude (not shown).

On the other hand, FFI outperforms Al far, c,}-models, because such models define a
spectrum of attractors thatftir significantly from nature in their third and fourth mo-
ments. Although these models have equally significant bjabe biases do not alone
account for the dierences between model and nature PDFs.

These results are entirely in line with the principle behiidand what one would ex-
pect of its performance. The results suggest that a congpaoismodel and nature PDFs
can inform the choice between Al and FFI. Al will be the inisation scheme of choice
for models with significant biases that are not accompanyeeoially significant higher
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order diferences in PDFs. Al intends to control and eliminate foreea®rs occurring
from a “translation” of the model attractor with respect b@ thature attractor in phase
space.
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4.2 Research line 2: Advanced schemes

4.2.1 Least Squares Initialisation (LSI)

In the following section we will compare the performance BfIESI against the standard
FFI approach for the same example configuratioficof 0.8,c, = 0.9}. The standard
deviation of the observational error is equaldat® = 1.5%, and the error covariande

is diagonal and contains the correct observational erroanvee. The background error
covariance matriB™ is estimated over 50 years of an uninitialised model run.
Figured4.12shows the RMSSS of FF-LSI forfikerent observational scenarios (full coloured
lines) as a function of the background error scalingfiégcient 10° > o < 15. The six
panels correspond to thefidirent forecast time horizons as indicated, and the dashed
lines correspond to the standard FFI performance. We obskat for smalk, the fore-
cast skills of all scenarios converge to zero. A smaduggests a small background error
covarianceB™, implying a high accuracy of the background information.isTleads to

an over-emphasizing of the background, and a neglect oftikergational infomation,
resulting in essentially uninitialised predictions. Fargea, we observe an improvement
in forecast skill of FF-LSI over standard FFI for partly iaitsed systems. In this case,
the observational information is fully taken advantage béve available, because a large
background error variance assimilates the observatiom#eey were perfect. The obser-
vational content limited to the observational subspaceaopggated to the entire model
domain according to the spatial correlations embeddedéarofihdiagonal elements of
B™, thus exceeding the standard FFI skill level. This behavimunderlined when view-
ing the full system (black line); the forecast skill of FF{L&nverges towards that of
standard FFIl. When the full system is being observed anda#vations are utilized, no
additional information can be obtained through the backgdoerror structure. Note also
that the skill improvement for the “extratropical atmospdias only marginal, due to its
weak coupling with the “ENSO” system inducing small covades.

In order to compare the similarity of the real backgroun@ecovarianceB and its ap-
proximationB™, figure4.13displays the percentage of the explained variance of each of
the eigenvectors dB (full line) and B™ (dotted line) in the upper panel, as well as the
scalar product of each pait(B) x v;(B™) in the lower panel, with/;(B) being theith
eigenvector oB, i = 1, ...,9 andx indicating the scalar product. The explained variance
is given byVar®*®(v;) = 4;/(Zi4;) x 100[%], with 2; being theith eigenvalue. We see that
the variance distribution is accurately reproduced and with exception of the third and
fourth that are perpendicular to each other, all remainiggresectors are fully aligned.

4.2.2 Exploring the Parameter Uncertainty (EPU)

In the following section we will study the performance of ERUdrift correction tech-
nique introduced in SecB.4.2 EPU is implemented during the forecast run after initiali-
sation with FFI, and will be referred to as FFI-EPU. We conegtis performance against
standard FFI without a correction procedure.

Figure4.14displays the distribution of the RMSE of all 108 c,}-models after Full Field
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Figure4.12: RMSSS as a function of the tuning d¢eienta for LSI. The panels refer to
six different averaging periods as indicated. The colors repraséatization of the full
system (black), the “ocean” alone (green), the “tropical@phere” alone (pink), and the
“extratropical atmosphere” alone (blue). The values ofstaedard FFI are displayed for
reference (dots).

Initialisation with (red lines) and without (black lineg)a implementation of EPU. The
specifications for EPU include the parameter rangegiven by the 109 model configu-
rations, as well as the correction time interidlgiys equal to one time step. The panels
correspond to the same six forecast horizons as earlieritiédally, the means of both
distributions are given in the insets. Results reveal theefieof implementing EPU up
to the third forecast year, with minor improvement for longerizons. This is evident in
the shift of the distributions related to FFI-EPU towardsaier RMSE values, as well as
a reduction of the mean error by 17%, 10%, 8%, 4%%®0and (2% for the six forecast
horizons respectively. Significant skill is limited to theasonal forecast, which is due to
sampling errors, as well as the progressive deviation oditiiebehaviour from the linear
assumption, on which EPU is based. Note, however, that ta@UBPU in conjunction
with FFI has implied only a minor increase in computatiorastc

In figure4.15we investigate the impact of the uncertainty about the wadithe sampling
interval for parametric errakA, as well as the correction time interval gi,s, ON the per-
formance of EPU. Both of these factors control the setup@fitiift correction technique.
In the left panel, the RMSE of FFI-EPU (full lines) is dispéad/as a function of the scaling
codficients, which scales the width of the sampling interval, ivg; € U(0, 3(1 — A",
simulating the level of uncertainty about the possible peri@r range. The RMSE is
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Figure 4.13: Top panel: explained variance over each eigenvectd"dbfised in LSI
(dotted line) and the actual backround error covarianceimat (solid line). Bottom:
scalar product between pairs of eigenvectorB'bandB.

calculated over the first year of prediction, and the skilstzndard FFI is given in the
dashed lines. Both example configurations correspondifg £00.8,c, = 0.9} (black)
and{c = 0.3,c, = 1.2} (red) are considered. Results show that best performamees a
found forB ~ 2, which is expected because the mean of the distributiarcm®es with
the actual parametric error. More importantly, we observéengprovement of FFI-EPU
over standard FFI (dashed line) for the entire range gives Y0, 3.5) and both model
configurations.

In the right panel of figurd.15 we investigate the dependence of the RMSE of FFI-EPU
on the length of the short time interval over which the biasagected. The same re-
lations apply for the right panel as for the left panel, but se¢ the scaling parameter
B ~ 2 in order to focus on the impact afTgjys alone. As anticipated, a shorter time in-
terval improves the performance of EPU for both configuratjdecause the linear error
hypothesis is no longer valid for large lead times. We cantsasever, that the improve-
ment in skill over standard FFI applies for time intervalso@bout 30 time steps for the
first configuration (red) and up to as much as 40 time stepgegponding to two months,
for the second configuration (black). These time intervalslze interpreted as a measure
of the duration of the linear regime, and are consistent thighargest (in absolute value)
Lyapunov exponent of both configurationg %%~ < |y5°3%=*?| in accordance with
the theory of deterministic model dynamidsi¢olis, 2003. For longer time intervals the
correction procedure deteriorates skill.

Overall, the results of this section show the robustnesd2td Eor simple dynamics, and
in situations in which large uncertainties with respecti® parameter range are present.
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Figure 4.14: Distribution of the RMSE for FFI (black line) and FF-EPU (rixake). The
six panels refer to six elierent averaging periods and are indicated in the correspgnd
labels. Mean values of the distributions are given in thetsis

4.2.3 Summary of research line 2

FF-LSI shows a clear skill immprovement over standard FFIgartially initialised sys-
tems. The skill improvement is larger than 5% for initiatisa of the “tropical atmo-
sphere” on forecast horizons of up to six “months”, and fer‘tbhcean” up to one “year”,
with marginal skill on longer horizons. Initialisation dfi¢ “extratropical atmosphere”
shows no significant improvement, due to its weak coupling h&ve also shown that
our approximation of the real background error covariaseelbust.

The implementation of EPU in conjunction with FFI revealgduction of the mean error
by 10% up to the first forecast “year”, 5% up to the third, andiaanimprovement for
longer horizons. Signifant skill is thus limited to seaddimae horizons, due to sampling
errors, as well as a deviation of the drift behaviour fromlthear assumption. We have
shown that skill improvement is sensitive to the specifarabf the uncertainty range, as
well as the time correction interval, but seems to be robitt espect to both.
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Figure 4.15: Left panel: RMSE of FF-EPU (solid line) over the first forecgsar as a
function of the width of the sampling distribution scalediwtihe parametes for both ex-
ample{c, c,}-configurations (black and red as indicated in the insegyhRpanel: RMSE
of FF-EPU over the first forecast year as a function of the bisisection intervalTgias,
for the same configurations. FFI skill (dashed lines) is sug@osed for reference in both

panels.



5 Conclusion

In this study we have investigated the relative performasfceull Field and Anomaly
Initialisation of climate predictions on seasonal-to-afdal time horizons under varying
conditions of observational and model error. FFl assiredaibservations directly into
the model, whereas Al assimilates the observed anomaltesamnestimate of the mean
model climate Magnussoret al,, 2017.

We have also investigated the skill of two advanced schemetemented in conjunc-
tion with FFI. Least-Squares-Initialisatio@&rrasset al., 2014 borrows central concepts
from data assimilation and has the aim of improving theahdonditions based on a least
squares approach in which the observational and modedtstatare taken into account.
LSI approximates the background error covariances usiaegrtbdel anomalies, and is
similar to the approach @mith and Murphy2007 in which the ocean is initialised. We
investigate how LSI can improve forecast skill through thepagation of information
across separate model compartments.

Exploring the Parameters Uncertaintydrrassiet al, 2014 is a short time drift correc-
tion technique applied during the forecast run. It expltitsfact that the evolution of the
bias due to parametric model error is fully correlated ingjralbeit dfficult to correctly
compute. EPU estimates the model bias by making a first ofg@o&imation in time.
The Jacobian of the forecast model must be computed at theredgtime during the
forecast run, and the parametric error is sampled from afggxancertainty range.

Our study has been carried out using a low order climate niédgla and Kalngy004,
necessating little computational time anffioet and allowing for robust inferences. Fol-
lowing the line of an OSSHEgengtssoret al, 1987 test bed, a “true” trajectory, which we
call the nature, is simulated, from which the observatioessampled within a Gaussian
white error. The true trajectory is targeted using impdrfeodels based on parametric
error, initialised under the implementation of the aboveesges incorporating the sam-
pled observations. A central assumption on which our ingagon is based is that the
phase space spanned by the model and the nature is the s@heeting the problem of
unresolved scales.

We first discuss the results related to the first main resderelspanning the comparison
of FFI and Al under dterent observational error and model error scenarios.-&fratl,
we have found that for the initialisation of single compagtits, the best performance for
long time horizons is obtained when the stabler componethieomodel, i.e. the “ocean”,
is initialised. Having the slowest error growth rate, theéan” behaves like the system’s
memory. Secondly, we have found that FFI depends sengitivethe observational error,
whereas Al is not significantly improved when the observalaeerror is reduced. This
result is in line with regards to the error scaling propert¢ both schemes, which can
be estimated using the unified formalism introducedlayrasset al.[2014. The initial
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conditions error of FFI is reduced for smaller observati@neors, but under the addition
of the model bias as in Al, the initial error scales less webards to the observational
error.

Thirdly, we have assessed the perfomance of either schemnekifferent scenarios of
model bias. Both schemes are identical when no model biaegept, i.e. in the face
of a perfect model. Anomaly Initialisation intends to avaiddel drift occurring in the
presence of a model bias, which can be detrimental to foret#as[ Magnussoret al.,
2017. We have identified two scenarios in which either schemgeafivrms the other.
For models specified by erroneous “tropical” coupling paeters that we have termed
{c, c,}-models, the forecast skill of Al decreases for larger mbdagses while that of FFI

is independent of the bias. This scenario suggests that ikipsoved only after model
enhancements. For models specified by an erroneous foranagneter that we have
termedr-models, the reverse is true, i.e. Al outperforms FFIl. Weeh@entified the
reasons behind these various results by comparing thetstatf the model and nature
PDFs. Al outperforms FFI for-models, because a significant model bias is present, and
other relevant dferences between model and nature PDFs are limited to thadeoo-
ments. For FFI, the model bias incurs initialisation owsdfithe model attractor, to which
the model’s short-term response is a climate extreme, audtirey oscillations. Our 3D
visualisation of this occurrence is a picture book examplehock-induced forecast er-
rors, and is supported by experiments in which the “perfeatieli is perturbed by in-
troducing an artificial bias onto the observations, indigaa direct relationship between
drift and perturbation magnitude (not shown). Initialisatwith Al avoids the occurrence
of a shock, because in the casea ahodels, the model PDF is well approximated after a
subtraction of the model bias. On the other hand, FFI outpex$ Al for {c, c,}-models,
because such models define a spectrum of attractors that significantly from that of
the nature in their third and fourth moments. Although theselels have equally signifi-
cant biases, the biases do not alone account for thereinces between model and nature
PDFs. Thus, implementation of Al can result in initial canahs less consistent with the
model PDF.

These results are entirely in line with the principle behidand what one would expect
of its performance. Al intends to initialise predictionsér to the model attractovjag-
nussoret al,, 2017 by effectively adding the model bias onto the observations. This i
merely a first order correction applied to the observatioitk the intention of approxi-
mating the model PDF, which is not guaranteed. The resutjgesi that a comparison
of model and nature PDFs can inform the choice between Al &hdAF will be the ini-
tialisation scheme of choice for models with significantseis that are not accompanied
by equally significant higher orderftierences in PDFs. One can say that Al intends to
control and eliminate forecast errors occurring from arftlation” of the model attractor
with respect to the nature attractor in phase space.

The results associated with the second main line investigahe performance of ad-
vanced schemes are as follows. LS-FFI shows a clear skillawgment over standard
FFI for partially initialised systems. The skill improventds larger than 5% for the
“tropical atmosphere” on forecast horizons of up to six “ni@i, and for the “ocean”
up to one “year”, with marginal skill on longer horizons. Tlextratropical atmosphere”
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shows no significant improvement, due to its weak coupling.nate further shown that
our approximation of the real background error covariarsceobust. This result con-
tributes towards the discussion on adequate coupled DAvsefiemaking a case for the
approximation of the forecast error covariances based@mtidel anomalies.

Finally, the implementation of EPU in conjunction with FFeveals a reduction of the
mean error by 10% up to the first forecast “year”, 5% up to theltland a minor im-
provement for longer horizons. Signifant skill is thus lied to seasonal time horizons,
due to sampling errors, as well as a deviation of the driftalvedur from the linear as-
sumption. We have shown that skill improvement is sensttivihe specification of the
uncertainty range, as well as the time correction inteitwat seems to be robust with re-
spect to both.

Future workwill require a validation of the above results from both asé lines us-
ing models of higher complexity. The development of an aliéve scheme to Anomaly
Initialisation on the basis of an approximation of the moal#tactor beyond a first or-
der correction of the bias is desirable. Investigationsia tirection have not yet been
undertaken by the author.
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4.15 Left panel: RMSE of FF-EPU (solid line) over the firstdoast year as a
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