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Ein Vergleich mehrerer Methoden zur Initialisierung von saisonalen bis dekadis-
chen Klimavorhersagen:

Full Field (FFI) und Anomaly Initialisation (AI) sind zwei Methoden, die zur Initial-
isierung von saisonalen bis dekadischen Klimavorhersageneingesetzt werden. FFI ini-
tialisiert das Modell anhand der Beobachtungen. Das hat zurFolge, dass die Trajektorien
zum Attraktor hin abdriften. AI initialisiert das Modell anhand der beobachteten Anoma-
lien, um Drift zu vermeiden. Wir vergleichen beide Methodenunter verschiedenen
Szenarien fehlerbehafteter Beobachtungen und Modellen. Außerdem analysieren wir
zwei weiterführende Methoden. Least Squares Initialisation (LSI) propagiert Beobach-
tungsinformation partiell initialisierter Systeme in unbeobachtete Räume des Modells
anhand der Kovarianzen der Modellanomalien. Exploring theParameters Uncertainty
(EPU) dient der Korrektur des Drifts während des Modelllaufs.
Unseren Untersuchungen liegt ein einfaches Klimamodell zugrunde. Ergebnisse zeigen,
dass bessere Beobachtungen die Vorhersagegenauigkeit vonFFI erhöhen. Dagegen
hängt die Vorhersagegenauigkeit von AI von Modellverbesserungen ab. Eine erfol-
greiche Annäherung des Modellattraktors mit Hilfe von AI ist nur dann gewährleistet,
wenn sich die Wahrscheinlichkeitsdichtefunktionen des Modells und des Klimas sich
lediglich um die erste Ordnung unterscheiden. SignifikanteUnterschiede höherer Ord-
nung können dazu führen, dass die Verteilung der Anfangsbedingungen weniger mit der
Wahrscheinlichkeitsdichtefunktion des Modells übereinstimmt, mit einer verringerten
Vorhersagegenauigkeit zur Folge. LSI und EPU führen zu Prognoseverbesserungen, die
zum Einsatz in Modellen höherer Komplexität ermutigen.

A comparison of techniques for the initialisation of seasonal-to-decadal climate pre-
diction:

Full Field (FFI) and Anomaly Initialisation (AI) are two schemes used to initialise
seasonal-to-decadal climate prediction. FFI initialisesthe model on the observations,
but trajectories drift towards the model’s own attractor. AI assimilates the observational
anomalies onto the mean of the model climate with the intention of avoiding drift. We
compare both approaches under different circumstances of observational and model er-
rors. We also analyse two advanced schemes. Least Squares Initialisation (LSI) prop-
agates observational information of partially initialised systems to the whole domain
using the covariance of the model anomalies. Exploring the Parameters Uncertainty
(EPU) is a drift correction technique applied during the forecast run.
Experiments are carried out using an idealized coupled dynamics. Results suggest that
an improvement of FFI necessitates refinements in the observations, whereas improve-
ments in AI are subject to model advances. A successful approximation of the model
attractor using AI is guaranteed only when the differences between model and nature
PDFs are limited to the first order. Significant higher order differences leads to an initial
conditions distribution that is less representative of themodel PDF, resulting in degrada-
tion of skill. Both LSI and EPU lead to significantly improvedskill scores, encouraging
implementation in models of higher complexity.
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1 Introduction

The 20th century witnessed the emergence of the field of climate science that has entered
the public consciousness and spawned widespread politicaldebate like no other. Pio-
neering work, to name only a few, covers the explanation of the Earth’s glacial cycles by
Milankovich [1941]; the idea of a global ocean conveyor belt byBroecker[1991]; the
link between CFCs and the ozone hole bySolomonet al. [1986]; and the use of ice cores
to reconstruct past climates, e.g.Thompson[2000]. After the discovery of the green-
house effect by Fourier in 1824, and first studies by Arrhenius concerning the influence
of carbondioxide on surface temperatures in 1896, greenhouse gases (GHGs) have been
identified as a driver of climate change [Pierrehumbert, 2010], and the effect to which
our planet will be impacted by cumulative anthropogenic emissions is an urgent ques-
tion. Plass[1956] predicted that the planet would be about 1◦C warmer in 2000 than in
1900 (IPCC[2013] estimate: between 0.65− 1.06◦C over 1880-2012), and early reports
about the effects ofCO2 on climate were addressed to the American National Academy
of Sciences byCharneyet al. [1979]. Combustion processes are a central pillar of to-
day’s economy; systematic measurements of risingCO2 levels in the atmosphere were
undertaken by Keeling after 1958 [Keeling et al., 2009]. The economic cost of sealing
emissions is weighed against likely future impacts on climate. Along with observations
of the Earth’s response to anthropogenic GHG forcing, prediction is inherently a central
tool of the discussion.
Climate models today synthesize knowledge acquired from studies of the Earth’s climate
system. The use of climate models in research on carbon dioxide and climate began in
the 1970s, and largely improved in the wake of increasing computational power, cou-
pling of additional components, and increasing model resolution and complexity. The
implementation of such models in centurial climate projections have simulated a warm-
ing response towards GHGs, the strength of which is dependent on the future emissions
scenario [Hawkins and Sutton, 2009]. The uncertainties of such predictions are derived
from the scenario uncertainty, and model deficiencies [Hawkins and Sutton, 2009].
Climate prediction on shorter time scales has recently begun to play a larger role [Meehl
et al., 2009]. In the context ofclimate services, seasonal-to-decadal (s2d) prediction has
received a lot of attention. Much like numerical weather prediction (NWP), the idea be-
hind climate services is to build institutions that provideinformation to the society about
how the climate is expected to change within the near future,so that adaptive measures
and planning can take place. However, such a shift towards operational climate fore-
casting bares a new set of demands that need to be met. The firstsuch demand is that
s2d models can reproduce seasonal-to-decadal climate variability patterns with sufficient
skill. Although climate models used for centural projections display decadal variability, it
has previously not been the goal of models to predict such patterns, which were averaged
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12 Chapter 1. Introduction

out through multiple runs [Haineset al., 2009]. The second central demand posed by cli-
mate services isregionalprediction skill, the lack of which will severely limit any service
to a country or other stakeholder. Inferences from centurial projections have trusted only
global mean averages; too large have been the model-relatederrors with respect to, for
example, the Atlantic meridional overturning circulation(AMOC), to dare any regional
assessments. Seasonal and decadal variability patterns such as the El Niño Southern Os-
cillation (ENSO) have regional character, so that both demands are connected, and depen-
dent on how well the model performs. This is by no means obvious; NWP relies perhaps
more heavily on observations and initialisation, whereas centurial projections are more
strongly dependent on the scenario uncertainty [Hawkins and Sutton, 2009].
Model-related uncertainties aside, predicting so calledinternal variability [Hawkins and
Sutton, 2009] will require the incorporation of knowledge with regards to the state of to-
day’s climate. If, first-of-all, variability patterns exist; secondly, they are predictable; then
thirdly, we need to synchronize our simulated climate with the observed pattern. Points
one and two have been observationally affirmed; the third must be achieved through a
correct initialisation of the system. Furthermore, besides a tracking of the variability,
using observations to initialise forecasts can correct theup-to-date response to GHG forc-
ing [Lee et al., 2006]. Previous centurial projections using climate models have been
initialised from randomly selected preindustrial states [Meehl et al., 2009], neglecting
observations on the grounds that initial condition signature is lost on such time scales.
S2d prediction therefore calls for schemes to initialise predictions. Full Field Initialisation
(FFI) incorporates observations, wherever available, directly into the model. However,
due to the unavoidable presence of model deficiencies, forecasts experience a drift from
the observations towards the climate of the model, negatively affecting prediction skill
[Magnussonet al., 2012]. Furthermore, initial conditions inconsistent with the model
climate can lead to rapid re-adjustments known as initialisation shocks, resulting in short-
term loss of skill. Anomaly Initialisation (AI) assimilates only the observed anomalies on
an estimate of the model mean climate. It has been devised with the goal of overcoming
initialisation shocks, as well as model drift, by initialising the model closer to its own
attractor [Smith et al., 2007]. Comprehensive comparisons of FFI and AI on s2d time
scales using state-of-the-art coupled climate models haverecently appeared [Magnusson
et al., 2012; Smithet al., 2013; Hazelegeret al., 2013]. Results have indicated improved
skill after initialisation at the seasonal time scale, witha slightly better skill for FFI [Mag-
nussonet al., 2012; Smithet al., 2013]. On the decadal scale, studies have shown skill
either in favor of AI [Smithet al., 2013] or FFI [Hazelegeret al., 2013].
State estimation theory in geosciences is commonly referred to as data assimilation [Da-
ley, 1991], and has a long-standing tradition in NWP. The goal is to provide the best pos-
sible estimate of the system’s state based on statistical ordynamical information, which
is then used as the initial condition for predictions [Kalnay, 2003]. Observations are as-
similated into the models according to their relative accuracies, and unobserved variables
and model grid points are taken into account by means of theircorrelations, allowing for
propagation of observational information and reduction ofinconsistencies. Data assim-
ilation (DA) has dramaticaly contributed to enhance forecast skill in NWP, and is now
regarded with attention by the s2d community. Coupled data assimilation schemes are
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being developed for climate models with the hope of reducinginconsistencies between
separate model compartments, but have a long way to go [Dee, 2013]. Such schemes are
in contrast to simple FFI and AI, and promise better initial conditions.
This study aims to contribute to the discussion on adequate initialisation approaches for
s2d prediction, and is concerned with two main objectives. The first objective compares
the performance of AI and FFI for different observational and model error scenarios. The
second objective introduces and assesses the skill of two advanced formulations. Least
Squares Initialisation (LSI) utilizes correlations between variables of different model
compartments in order to propagate observational information and reduce inconsistencies
in the spirit of coupled DA. Exploring the Parameters Uncertainty (EPU) is a technique
that corrects the model drift during a forecast run, based ona short time approximation of
the model error due to parametric uncertainty.
Our research is carried out using the low order climate modelof Peña and Kalnay[2004].
It is based on the Lorenz-3-variable model [Lorenz, 1963], with a slow component strongly
coupled to a fast component mimicking the tropical ocean-atmosphere coupling, and a
weakly coupled fast component in analogy of the extratropical atmosphere. Initialisation
schemes are assessed in the framework of an Observing SystemSimulation Experiment
(OSSE, [Bengtssonet al., 1981]) test bed, in which observations are sampled from a de-
fined true trajectory, against which forecast skill is assessed as well.
Parts of this study have formed a publication [Carrassiet al., 2014], currently under revi-
sion. A unified formalism based on the notation and concepts of DA theory from which
FFI and AI can be derived, has been proposed. We make use of this formalism in our
methodology.
Chapter2covers the background related to our research. Chapter3 introduces the method-
ology, the aforementioned schemes, and the low order climate model. Results are given
in chapter4. Finally, conclusions and future work are summarized in chapter5. We also
encourage the reader to make use of the list of acronyms that follows the table of contents.





2 Backdrop

2.1 From numerical weather prediction to climate
projection: features of different time scales

Numerical weather prediction (NWP) is an initial value problem. A model representing
the necessary dynamics is integrated starting from an initial state informed by the most
recent observations. The quality of a forecastx f (t) will depend on how well the model
F(x f ) represents the real dynamics, as well as the quality of the initial conditionsx f (t0).
The system state is given by a state vector containing all information of all variables at all
geographically located model grid points, the superscriptf stands for the forecast state,
andt represents the forecastleadtime. The errore f (t) = x f (t)−xnat(t) at any forecast time
t (in the scale resolved by the model) is unknown, wherexnat is a projection of the true
continuous dynamics onto the discretized model grid. A set of observationsyobs samples
nature, subject to instrumentational errors and having a much smaller dimension than the
model state due to a limited observational network. Mergingthe observations with the
model state results in the best attainable representation of the nature state, which is the
goal of the data assimilation process described in Sect.2.6. The resultinganalysisstate
is used for the initial conditions, as well as for forecast skill verification, establishing a
proxy for the unknown nature state.
Despite the shortcomings intrinsic in the field with regardsto the impossibility of perfect

observations or their perfect geographical distribution,and the impossibility of a per-
fect model, the skill of today’s weather forecasts up to several days in the future bares
witness to how far NWP has advanced. This is widely due to the increased power of su-
percomputers allowing for much finer numerical resolutionsand fewer approximations;

Figure 2.1: Schematic illustrating progression from initial value problems with daily
weather forecasts at one end, and century climate change projections as a forced boundary
condition problem at the other. Seasonal and decadal prediction falls in between. After
Meehlet al. [2009].
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16 Chapter 2. Backdrop

improved representation of small-scale physical processes within the models; more accu-
rate methods of data assimilation incorporating observations into the model and resulting
in improved initial conditions; and a wider observational network [Kalnay, 2003].
Lorenz [1963] discovered what is now referred to as deterministic chaos:based on a
simple system representing a convection cell, he found thatsolutions were unstable with
respect to small modifications, so that slightly different initial states can evolve into con-
siderably different states. Such a “sensitivity to initial conditions” represents an unsur-
mountable prediction barrier dependent on the finite accuracy of observations [Lorenz,
1982]. It has given way to an ensemble approach initialising several trajectories from per-
turbed, equally likely initial conditions, in order to assess the probability of a forecast by
looking at the forecasted ensemble spread [Palmer, 1993]. The Ensemble Prediction Sys-
tem (EPS) thus explores the probability of a forecast by evolving perturbations according
to the dynamics given by the model. This is particularly useful because the evolution of
probability density functions (PDFs) using a high order nonlinear model is not feasible in
practice. However, the ensemble size is far smaller than thesystem’s dimension and can
only account for the system’s largest instabilities.
Long term climate projection is concerned with assessing the probability of climatic
changes given a scenario of additional boundary conditions. Such endeavors have re-
ceived widespread media attention in response to reports ofthe International Panel for
Climate Change (IPCC). Whereas weather forecast models assume all components be-
sides the atmosphere (ocean, land and cryosphere) as well asCO2 and aerosol concen-
trations to be fixed for the short duration of interest, climate models make use of the
full variability of all components of the system that play a role on time scales of about a
hundred years, albeit at a courser resolution. Observations of the Earth’s system are not
directly incorporated in centurial predictions, because all memory of the initial conditions
is expected to be lost on such time scales. Multiple runs (ensembles) of such models
are made in order to average over the internal variability ofthe system. Uncertainty in
climate representation is sampled using multi-models or multi-parameter results from the
same model [Haineset al., 2009]. Notice that the aforementioned prediction barrier is
overcome through a paradigm shift from forecasting specificsystem states in NWP to
time-averaged probability distributions of such states constrained by the system’s “cli-
mate”.
Figure 2.1 [Meehl et al., 2009] indicates that climate projection is a forced boundary
condition problem mainly determined byCO2 and other aerosol or greenhouse gas con-
centrations. Seasonal and decadal prediction falls between daily weather forecasts using
high resolution models, and lower resolution centurial projections, sharing features inher-
ent to both categories. Seasonal forecast models implemented for time scales spanning up
to twelve months have an active ocean component into which real ocean observations are
assimilated in order to initialise the prediction [Anderson, 2008]. Due to the large signal
of the El Niño Southern Oscillation (ENSO) throughout the Pacific and beyond, models
are tuned to get the tropical Pacific to work well [Haineset al., 2009].
In contrast to seasonal forecasting, decadal forecast horizons between one and ten years
demand models that no longer operate under fixed externals forcings from aerosols,CO2,
or the solar cycle [Haineset al., 2009]. Furthermore, it has been shown [Haineset al.,
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2009; Smith et al., 2007] that initialisation impacts forecast skill, and recent advances
of observing technologies for the slower components of the climate system give rise to
new potential. The Argo profiling float array in the oceans monitor the top two km of
ocean heat content and density since 2007, and satellites launched by the ESA (SMOS)
in 2009 and Nasa (Aquarius) in 2011 observe soil moisture andocean salinity conditions.
Emerging coupled data assimilation approaches [Dee, 2013] seek to optimally incorpo-
rate such observations of slow system components while maintaining congruence in the
coupling of separate components, rather than assimilatingobservations into each compart-
ment autonomously (discussed later in Sect.2.6). Such schemes are still in their infancy,
however, and current seasonal-to-decadal (s2d) forecastsresolve to initialisation of indi-
vidual compartments resulting in initial states that mightbe incongruent with the model
climate. Classical Full Field and Anomaly Initialisation under investigation in this thesis
assimilate observations directly, in the absence of any data assimilation. Note that s2d
prediction involves high-resolution models for better simulation of both regional climate
and climate extremes in contrast to standard coupled modelsused for climate projection
[Meehlet al., 2009]. Futureseamlessclimate predictions have been envisaged, predicting
a number of time scales using different versions of the same model [Meehlet al., 2009].

2.2 What do chaotic simple models have in common
with the atmosphere?

In his groundbreaking paper onDeterministic Nonperiodic Flow, Lorenz[1963] found
nonperiodic solutions of a simple forced dissipative system representing a convection
cell. Although nonperiodic behaviour is a common feature innatural systems, distin-
guished especially in turbulent flow, the existence of deterministic nonperiodic solutions
had not yet been established. Forlinear systems, constant or periodic forcing leads to a
constant or periodic response, so that nonperiodic solutions were sometimes regarded as
the result of nonperiodic or random forcing.Lorenz[1963] showed that nonperiodicity is
not implicitly connected to randomness, but can be fully deterministic, with the addition
that such systems are characterized as having asensitive dependence on initial condi-
tions. Besides having laid the foundation for a new branch of science in chaos theory,
the existence of nonperiodic determistic solutions based on a highly truncated model of
convection dynamics has had profound practical implications in Earth system modelling.
Chaosis defined as aperiodic long-term behaviour in a deterministic system that exhibits
sensitive dependence on initial conditions [Strogatz, 2000]. Solutions do no settle down
to fixed points, periodic trajectories, or quasi-periodic trajectories; the irregular behaviour
stems from the system’s nonlinearity and is not a consequence of random or noisy inputs;
and nearby trajectories separate exponentially fast. Anattractor is defined to be a closed,
minimal, and invariant set that attracts an open set of initial conditions [Strogatz, 2000].
Any trajectory that starts in the attractor stays in the attractor for all time, and any tra-
jectory that starts in its basin of attraction converges towards the attractor ast → ∞. A
strange attractoris an attractor of a system exhibiting sensitive dependenceon initial con-



18 Chapter 2. Backdrop

Figure 2.2: Evolution of an ensemble of initial points on the Lorenz (1963) attractor, for
three sets of initial conditions in different phase space regions. Predictability is a function
of the initial state. AfterPalmer[1993].

ditions [Strogatz, 2000]. A famous example of a strange attractor is the Lorenz-3-variable
model’s [Lorenz, 1963] “butterfly”, proven to exist byTucker[1999].
Today, the chaotic nature of the atmosphere is widely accepted [Trevisan and Palatella,
2011]. This conclusion has been drawn from observational studies, as well as from work
on low order truncations of atmospheric dynamics [Palmer, 1993]. First of all, weather
forecasts starting from very similar initial conditions can evolve into very different at-
mospheric states [Buizza, 2000]. Then, simple models such as the Lorenz equations, or
10-component barotropic equations [de Swart, 1990], show qualitative similarities with
the behaviour of the large scale atmosphere in the existenceof a regime structure, as well
as distinct time scales. Such time scales are connected to the quasi-stationaryregimes,
and correspond to an oscillation time around a regime centroid, and a residence time
within a regime [Palmer, 1993]. In reality, weather regimes have been observed to be a
feature of low-frequency atmospheric variability, in which planetary flow patterns appear
repeatedly at fixed geographical locations and persist beyond the life times of individual
weather disturbances [Ghil and Robertson, 2002].
Another distinguishing property of the Lorenz equations mirrored in the atmosphere is

the existence of distinct phase space regions of high (low) instability associated with low
(high) predictibility. Figure2.2 illustrates the phase space evolution of three different
ensembles of initial points on theLorenz[1963] attractor [Palmer, 1993]. Trajectories
initialised from the ensemble in the top panel remain close together throughout the en-
tire prediction. Trajectories initialised from the ensemble in the bottom left panel remain
close initially, but eventually diverge. Trajectories initialised from the ensemble in the
bottom right panel diverge almost immediately. In the last example, two entirely different
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and equally probable system states can evolve from the ensemble of initial conditions,
making forecasting fruitless. Thus, predictability is a function of the initial state, and the
evolution of an ensemble can serve as a measure of forecast probability. Ensemble Pre-
diction Systems are now common practice in NWP [Buizzaet al., 1999].
Perturbation growth is given by theLyapunov exponents. In numerical studies of the
Lorenz attracttor, one finds that||δ(t)|| ∝ ||δ0||eγt, whereγ ≈ 0.9 is the (leading) Lyapunov
exponent [Strogatz, 2000]. This value represents an average over the entire attractor, and
describes the growth rate of a pertubation in thelinear regime, i.e. for||δ0|| → 0. The
linear error doubling time is then on average given byt2 ∝ 1

γ
ln 2, a system-intrinsic value

fixing a predictiability horizondependent on the initial error size. The exponential di-
vergencesaturateswhen the separation of trajectories is comparable to the diameter of
the attractor, as they cannot evolve further apart [Strogatz, 2000]. Lyapunov exponents as
well as their computation are discussed in Sect.3.8. Suffice it to say that the calculation
of such exponents are neither feasible nor particularly desirable in NWP, the former for
the reason that the model dimensions are too large to get holdof the system’s instabilities,
the latter due to the fact that the fastest growth rate occurson the scale of the Brownian
motion, saturating rapidly.
Exponentially growing errors saturate eventually, i.e. their growth rate subsides as the
magnitude of the errors increases [Lorenz, 1982]. A study byLorenz[1969] indicated
that even if the larger scales could be observed perfectly, the inevitable uncertainty in the
smaller scales would after a day or so induce errors in the larger scales, comparable to
the larger-scale initial errors which presently result from inadequate observations. The
induced errors would then grow as if they had been present initially. This was later ob-
servationally confirmed [Somerville, 1979]. Thus, small scale features with fast doubling
times that are unlikely to be resolved incurr a bound on the accuracy of one-day forecasts,
ultimately resulting in a meanpredictability barrier [Lorenz, 1982]. Early estimates of
atmospheric doubling times with realistic models amountedto about five days [Charney
et al., 1966], based on deviation rates of perturbed integrations from the control. The esti-
mates decreased as models became more refined.Lorenz[1982] found an error doubling
time of 2.5 days by comparing the differences between the 1-day forecast with the 2-day
forecast from the preceding day and so on. Using theLorenz[1982] method,Bengtsson
and Hodges[2006] assess a potential increase in forecast skill compared with today by
about 3 days in the extra-tropics, and as much as a week in the tropics.
In this section we have illustrated how work with simple models has found many analogs
in the real atmosphere, covering sensitivity to initial conditions, regimes, characteristic
time scales, predictability, and error saturation.Palmer[1998] investigates the response
of the Lorenz equations to a small-amplitude imposed forcing as an analogue to anthro-
pogenic climate change, finding a signal strongly dependenton the system’s natural vari-
ability. In our study, we follow the philosophy ofHoskins[1983], that understanding is
achieved through the interaction of NWP and conceptual models belonging to a continu-
ous hierarchy, extended byPalmer[1998] to climate models too.
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2.3 Extended range prediction

In Sect. 2.2, we have discussed the deterministic predictability barrier of approximately
two weeks [Lorenz, 1982] as a consequence of the chaotic feature of the atmosphere.
Prediction horizons beyond this limit are known asextended range[Palmer, 1993]. The
objective of extended range predictions is to infer quantities describing the PDF of the
atmospheric state, that can remain predictable on much longer time scales. Predictability
can arise fromexternalfactors that alter the likelihood of residence in atmospheric attrac-
tors [Palmer, 1993]. In principle, a quantity can be defined as predictable if its probability
of occurrence is larger than a random guess obtained from avery longstatistical average,
wherevery longmight indicate a sufficiently larger time period (e.g. an order of mag-
nitude) compared to the forecastedmeanperiod . We exemplifly this on the basis of the
quasi-periodic solar forcing that modulates the weather PDF outside of the tropics on the
time scale of the Earth’s orbit. It is easy to infer that the month of August of the next year
will most likely be on average warmer than the month of January for any location on the
extratropical Northern hemisphere. A prediction of this kind in which we have predictive
skill compared to a random draw from a multi-year statistical average appears trivial, but
we can also establish that the same can be inferred for the prediction of the relative mean
temperature difference between January and August of any year up to many thousands
of years in the future. In relation, the half-year accuracy relative to the long prediction
horizon already seems a lot more impressive. This kind of accuracy is solely due to the
(very predictable) quasi-periodic nature of the Earth’s orbit, as well as the impact due to
the magnitude of the solar forcing on the Earth’s atmosphere. The Milankovich cycles
[Milankovich, 1941] represent documented signals in the Earth’sarchives(e.g. polar ice
sheets) of much slighter changes in solar forcing, baring witness to the Earth’s climatic
response to a quasi-periodic forcing. Interestingly, thisis the expected response of alin-
ear system to such a forcing [Lorenz, 1963], indicating that a linear approximation of the
Earth’sfirst order, equilibrium response to a forcing is somewhat justified. In summary,
the PDF of the Earth’s atmospheric state, i.e. ourweather, is clearly a function of bound-
ary conditions such as the forcing.
Abstracting from the example above, if climatic parametersthat exhibit a forcing on the
Earth’s atmosphere are predictable to some extent, then there is also hope to make infer-
ences about the atmospheric PDF in response to the forcing. Such predictability due to
evolving boundary conditions is known aspredictability of the second kind, in contrast
to predictability of the first kindassociated with initial conditions [Kalnay, 2003]. The
most prominent of such parameters are sea-surface temperatures (SSTs), but variables
describing soil moisture content, land cover, sea-ice extent, and snow cover [Zwiers and
Kharin, 1998; Doblas-Reyeset al., 2013] all play a role too, also due to insulation and
albedo effects. The slow nature of thecryo- andhydrospheresis much in favour of the
predictability of such climate parameters. Note also that increased forcing due to anthro-
pogenic greenhouse gases has now become an important sourceof predictability too.
In more general terms, climates in which a large fraction of the interannual variance of
seasonal means originates from sources other than high frequency weather are often de-
scribed aspotentially predictable[Madden, 1976], where the wordpotential indicates
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that the predictability also depends on the predictabilityof the anomalous forcing [Row-
ell, 1998]. This can be assessed in terms of a signal-to-noise ratioF = σ2

tot/σ
2
ǫ of the total

variance divided by the unpredictable weather noise [Madden, 1976; Madden and Shea,
1978; Madden, 1989]. It is estimated using purely observational data at each point, can
be plotted globally, and includes secondary sources of predictability, not just that due to
SSTs [Rowell, 1998]. However, the underlying model that separates the signal from the
unpredictable noise assumes a constant signal through eachseason, which is often untrue
[Rowell, 1998]. An alternative method relies heavily on the underlying model’s climate
skill, and assumes potential predictability to be derived entirely from oceanic forcing. In
this approach, potential predictability is measured usingan ensemble of climate simula-
tions, forced by the same observed interannually varying SSTs, but started from different
initial atmospheric conditions. The sensitivity to initial conditions is used to quantify the
random component of interannual variability, whereas the relative similarity is used to
quanitify the potentially predictable component of the total variance [Rowell, 1998].
The potential for skillful decadal predictions depends largely on whether models simu-

late sufficient decadal climate variability both in terms of magnitude as well as structure
[Meehlet al., 2009]. Zwiers and Kharin[1998] compare the ratios of the simulated to-
tal variance with the observed total variance, and the simulated weather noise with the
observed weather noise for 30 different models within the Atmospheric Model Intercom-
parison Project (AMIP). The ratios indicate a large spread amongst models in terms of
how well they simulate the observed total variance, as well as the weather noise for some
variables. Figure2.3shows the ratioF between the interannual variance of the seasonal
mean and the corresponding weather noise for December-January-February (DJF) 850
hPa temperatureT850 as simulated by four different models calculated according to the
alternative method described above. All models simulated lessT850 potential predictabil-
ity than computed from the observations. Although there is consistency between models
in terms of the proportion of the globe at which significant predictability is found (e.g.
strong evidence of potential predictability is seen in the tropics), there is considerable
variation in the spatial pattern of significantF statistics [Zwiers and Kharin, 1998]. En-
couragingly,Hegerlet al. [2007] have shown that the temperature variability of coupled
climate models over global and continental space scales arerealistic, even on time scales
up to multiple decades.
Atmospheric long-term variability patterns exist, that have different time scales and spa-
tial impact, and are commonly known as the interannual El Niño Southern Oscillation
(ENSO), the decadal North Atlantic oscillation (NAO), the Pacific decadal variability
(PDV), the Atlantic multi-decadal variability (AMV), and the Madden-Julian oscillation
(MJO), to name only a few [Smithet al., 2012]. The largest source of seasonal forecast
skill is the ENSO [Smith et al., 2012; Doblas-Reyeset al., 2013], the first successful
prediction pioneered byCaneet al. [1986] with a simplified coupled ocean-atmosphere
model. This is in line with the predictability signal in Fig.2.3, although such studies
far exceed actual forecast quality achieved due to assumptions such as perfectly predicted
boundary forcings [Doblas-Reyeset al., 2013]. Warm sea-surface temperature anoma-
lies in the tropical Pacific lead to increased ocean-to-atmosphere heat flux as well as
a coupled feedback, impacting the structure of tropospheric rainfall latent heat release
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Figure 2.3: The potential predictabilty ratioF between the interannual variance of the
seasonal mean and the correspondng weather noise induced variance for analysed DJF
meanT850 as simulated bya ECMWF, b CCC model,c MPI model,d UKMO model.
Contours are 0.5, 1, 2, 4, 8, and 16. Light (dark) shading corresponds toF ratios that are
significantly greater than one at the 5% (1%) significance level. High terrain areas have
been masked. AfterZwiers and Kharin[1998].
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with widespread teleconnections in remote regions of the globe [Doblas-Reyeset al.,
2013]. ENSO is now accurately predicted many months ahead, with dynamical models
slightly more accurate than statistical techniques [Smithet al., 2012]. For example, at 8
months mulitmodel correlation coefficients for Niño-3.4, a region in the tropical Pacific,
are approximately 0.75, and then they drop to 0.6 and 0.5 at 10months and 12 months
respectively. Seasonal forecasts of Atlantic tropical storm activity are skilful and issued
operationally [Smith et al., 2012], too. In comparison, decadal prediction is still in its
infancy [Haineset al., 2009] and will be followed up in our discussion on initialisation
below.

2.4 Narrowing uncertainty by means of initialisation

Climate predictions are subject to three sources of uncertainty to varying degrees, de-
pending on the forecast time horizon and spatial scale [Hawkins and Sutton, 2009]. The
first is the uncertainty connected to the chaotic features ofthe atmosphere, discussed in
Sect.2.2. Predictions aside, an atmospheric state can be chosen at random from the “ob-
served” atmospheric PDF. This is also known as theinternal variability of the system
[Hawkins and Sutton, 2009]. The second source of uncertainty is related tomodel defi-
ciencies, and the third is thescenario uncertaintyassociated with future radiative forcing
due to GHG emissions [Hawkins and Sutton, 2009]. Figure2.4 shows the total variance
for the global decadal mean surface air temperature predictions split into the three sources
of uncertainty as a function of lead time. On climate projection time scales, the scenario
uncertainty contributes towards the largest total variance of the mean global temperature,
whereas the internal variability is almost entirely insignificant. At the other end of the
spectrum, the insets show that during the first two decades the global as well as local total
variance is comprised only of uncertainties related to model inadequacy and internal vari-
ability. Additionally, we can see how the variance due to internal variability drops after
making a decadal instead of an annual average, and that localuncertainties are likely to
be higher than those related to global averages. The relative importance of internal vari-
ability and model uncertainty will differ for other variables. Nevertheless, it is likely that
the uncertainty in regional climate predictions for the next few decades is dominated by
model uncertainty and internal variablity, that are potentially reducible through scientific
progress [Hawkins and Sutton, 2009].
Improving climate models is an ongoing process, which is much enhanced in the wake
of an improved observational network. In order to narrow theuncertainty with regards
to the internal variability, its evolution can be predictedby initialising dynamical models
with the current state of the climate system. However, initialisation is non-trivial, and
difficulties must be overcome in order to achieve such improvements in reality [Smith
et al., 2012]. Predictions beyond a few weeks rely on observations of theslow coupled
components, including e.g. the sub-surface ocean, which are sparse. Then, constrain-
ing a model with observations generally disrupts its dynamical balance, leading to rapid
re-adjustments, known as initialisation shocks, which canlead to loss of forecast skill
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Figure 2.4: Total variance for the global decadal mean surface air temperature predic-
tions, split into the three sources of uncertainty. Orange fields represent the internal vari-
ability component. Insets: As in the main panel, but only forlead times less than 20 years
for (left) the global mean and (right) a North American mean.Lead times shorter than 5
years are plotted using annual mean data to highlight how theinternal variability compo-
nent is vastly reduced when considering decadal mean data. After Hawkins and Sutton
[2009].

[Smithet al., 2012; Doblas-Reyeset al., 2013]. Furthermore, model deficiencies result in
a difference, orbias, between model simulations and observations averaged overa given
period. Figure2.5gives an example of model bias for the HADCM3 general circulation
model, showing a global map of the difference in model simulated and observed annual
near surface temperatures averaged over the period 1960-2009. During the forecast, the
model will drift back towards its preferred climate state, introducing errors that could be
large compared to the predictable signal [Smithet al., 2012]. Such drift can be neglected
in NWP, because forecast horizons are short, and the model isregularly constrained by
observations and thus kept close to the real climate [Magnussonet al., 2012]. Also, in
NWP the initial condition error growth masks the bias, whichis related to model errors.
Finally, imperfect model simulations of internal variability as well as imperfect responses
to external forcing [Smithet al., 2012] that might increase the bias over the forecast run,
will limit the skill improvement achievable through initialisation.
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Figure 2.5: Example of model bias, shown by the difference in HADCM3 model simu-
lated and observed annual near surface temperatures averaged over the period 1960-2009.
After Smithet al. [2013].

2.5 State-of-the-art initialisation techniques

Full Field Initialisation (FFI) assimilates the observations directly into the model. The
bias is corrected a-posteriori by applying a lead time dependent bias correction in post-
processing. In seasonal forecasting, it is also made dependent on the seasonal cycle [Mag-
nussonet al., 2012]. A robust estimation of the bias requires a large data set ofhindcasts
(i.e. retrospective forecasts). However, biases can be flow-dependent, related to different
initial conditions and the nonlinear nature of the system [Magnussonet al., 2012]. If the
bias is large enough, the nonlinear terms can become non-negligible, making such a linear
calibration process insufficient [Magnussonet al., 2012]. Furthermore, imperfect model
responses to GHG forcing can lead to mean changes in the bias [Smithet al., 2012], not
accounted for in the hindcast period.
Anomaly Initialisation(AI) assimilates theobserved anomaliesinto the model, i.e. the
differences between the observations and the observed means (anomalies) are added onto
the simulated mean of the model climate [Magnussonet al., 2012]. In effect, this is the
same as subtracting the model bias from the observations. The rationale is to avoid an
initialisation shock occuring from an initial state far away from the model attractor, as
well as to avoid model drift [Magnussonet al., 2012]. Avoidance of shock is by no means
guaranteed, since the structure of the observed anomaly maynot be consistent with the
model mean state, e.g. application of an observed sea-ice anomaly in regions where the
model never has sea-ice [Magnussonet al., 2012]. Avoiding model drift allows the a-
posteriori bias correction to be independent on forecast lead time, and therefore more
robust. However, calibration of the forecasts face the sameproblems as FFI, which are
connected to the nonlinearities arising when a system’s mean state is different [Magnus-
sonet al., 2012].
Practical concerns arise for both approaches. Computationof bias estimators for decadal
prediction experiments is expensive. The seasonal independence of the bias correction
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Figure 2.6: Illustration of bias correction for full field (left) and anomaly (right) initialisa-
tion. Thin black curves show the observed time series of annual mean global temperature.
Coloured curves show the ensemble mean hindcasts, with different colours showing dif-
ferent start dates. (a) and (b) show absolute values (K). (c) and (d) show anomalies after
adjustment for model biases. The solid grey and black dashedcurves in (a) and (b) show
values from the analyses and mean uninitialised model control runs respectively. After
Smithet al. [2013].

technique when using Anomaly Initialisation thus allows less computation for equal level
of “robustness”. On the other hand, the model climatological mean over a long period has
to be computed for the implementation of AI. Moreover, the sampling period used for the
observed climatology must be consistent with that used for the model climatology. Some
regions like the southern oceans had not been observed pior to the advent of Argo, or
only sporadically, so that there is a lack of information to derive a long-term climatology
[Magnussonet al., 2012].
Figure2.6 [Smithet al., 2013] illustrates the evolutions of forecasts (i.e. model integra-
tions) after FFI (top left) and AI (top right). Given that such integrations have been run
over a past record from 1960-today, they are also termedhindcasts, with the total period
after 1960 known as thehindcast period. The thin black curve represents the observed
annual mean global temperature, which has increased by about 0.5 K since 1960. The
black dashed curve shows the mean of uninitialised long control runs, indicating a global
average model bias of about -0.5 K. Note that the model control runs show a similar in-
crease in global annual mean temperature due to greenhouse gas forcing. The grey curves
show values from theanalyses, which have already been described in Sect.2.1 as the
initial conditions after a merging of observations with themodel state (here: according to
either FFI or AI). The coloured curves show the ensemble meanhindcasts, with different
colours corresponding to different start dates. After Full Field Initialisation we observe
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that the forecasts drift within approximately the first yeartowards a cooler average model
climate, before following the increasing model trend. After Anomaly Initialisation, the
forecasts start close to the model climate and do not exhibita discernable drift. Due to
the cold bias of the model, it is more indicative to look at whether the model predicts the
observed anomalies, rather than absolute values. The bottom panels display the observed
as well as predicted anomalies after application of the biascorrection procedure. Note
that the observed record shows a recent stagnation of the warming trend in the last decade
or so. As seen here, this stagnation has not been predicted bymany models, which has
caused much debate in the scientific community [Guemas et al., 2013]. This shows how
the bias can change due to incorrect responses to greenhousegases, that neither AI nor
FFI can avoid [Smithet al., 2012].
Recent decadal prediction studies have demonstrated skillbeyond the seasonal time scale
using FFI, e.g. byYeageret al. [2012]. Several have adopted Anomaly Initialisation, e.g.
Smith et al. [2007]. It is important to assess their relative merits, and few such studies
exist [Magnussonet al., 2012; Smithet al., 2013]. It is unclear which approach is best
for seasonal-to-decadal prediction, and both are currently being evaluated [Smithet al.,
2012].

2.6 Data assimilation

Data assimilation (DA) is a field that deals with the incorporation of data from observa-
tions into real physical models. Its main ambition is to obtain the most accurate estimate
of the true state of a system given the information at hand. For most geophysical applica-
tions, the dimension of the physical model is greater than the dimension of the observa-
tional phase space. This means that any given observationalinput vector can be related to
more than one estimate of the model state, making the problemunderdetermined. How-
ever, knowledge of the past state of the system can further constrain the range of possi-
bilities of the current model state. In NWP for example, in which the model is updated
with new observations at regular short time intervals, the model stateimplicitly contains
information about the past observations too. Accordingly,both incoming observational
data and a calculated model trajectory are merged to infere an estimate of the truth that
utilizes the availability of both sources of information and is expected to be more accurate
than either sources alone. Accuracy is maximized by acquiring knowledge of the error
statistics of both sources of information. If one source is noted to be more accurate than
another, then weights to each source can be given appropriately. In an idealized scenario
in which errors are normally distributed, a unique set of weights minimizing the error
variance of the estimate, or so calledanalysis, can be found [Kalnay, 2003].
In a Bayesianapproach, the model state uncertainty after a short forecast is also known
as theprior, and the observational uncertainty is known as thelikelihood. The resulting
PDF, a product of the two PDFs around the mean model or observed state, is known as the
posterior. This approach is associated with Bayes’ theorem of conditional probabilities,
and interpretes the incoming data as asequence, ultimately resulting in the minimization
of a cost function. The prior is sometimes also referred to asthebackgroundor thefirst
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Figure 2.7: Illustration of the properties of the probability distribution of the analysisT,
given observationsT1 andT2, using either the least squares of the Bayesian approach.
After Kalnay[2003].

guess. In the following we only give an overview of the basic ideas behind DA, as well
as an explanation of the equations necessary for our analysis. For a complete description
of the many DA techniques, seeKalnay[2003].
We introduce main concepts using an example fromKalnay[2003]. Assume two indepen-
dent measurements of the temperature at a given location andtime. These can be written
in the form

T1 = Tt + ǫ1 T2 = Tt + ǫ2 (2.1)

whereTt represents thetrue temperature, andǫ1,2 are the respective errors associated with
both measurements. We assume unbiased instruments, i.e.ǫ1 = ǫ2 = 0, and knowledge
about the variances of the Gaussian observational errorsσ2

1 andσ2
2. Furthermore, we

assume uncorrelated errors, i.e.ǫ1ǫ2 = 0. Given this statistical information about both
observations, we can estimateTt from a linear combination of the two observations:

T = a1T1 + a2T2 (2.2)

Imposing the condition of an unbiasedanalysis T, we writeT = Tt, so thata1T1 + a2T2 =

Tt and thus, given unbiased errors,a1 + a2 = 1. T will be the best estimateof Tt if the
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coefficients are chosen to minimize the mean squared error ofT:

σ2
a = (T − Tt)2 = (a1T1 + a2T2 − Tt)2 = (a1(T1 − Tt) + a2(T2 − Tt))2 (2.3)

Substitutinga2 = 1− a1, and minimizing with respect toa1 gives

a1 =
σ2

2

σ2
1 + σ

2
2

a2 =
σ2

1

σ2
1 + σ

2
2

(2.4)

The weights of the observations are proportional to their accuracy. Substituting the coef-
ficients of Eq.2.4into Eq.2.3, we obtain a relationship between the analysis variance and
the observational variances:

1
σ2

a

=
1

σ2
1

+
1

σ2
2

(2.5)

Thus, if the coefficients areoptimal, the errorsunbiased, uncorrelatedand their statistics
Gaussian, then the precision of the analysis is the sum of the precisions of the measure-
ments [Kalnay, 2003]. Figure 2.7 illustrates the probability distribution of the analysis
P(T), given the observationsT1 andT2 and their associated uncertainties. The resulting
analysis is more accurate than either observed temperatures.
Assume that one of the two temperaturesT1 = Tb is the forecast or background value,
and the other is an observationT2 = To. Using Eq.2.2 and Eq.2.4, we can rewrite the
analysisT = Ta as

Ta = Tb +W(To − Tb) (2.6)

where (To − Tb) is known as theobservational innovation, update, or increment, i.e. the
new information brought by the observation.W is the optimal weight given by

W = σ2
b(σ

2
b + σ

2
o)
−1 (2.7)

Such a rearrangement of equations gives rise to the following interpretation of the prob-
lem. The analysis is obtained by adding the innovation to thefirst guess, weighted by
the optimal weight. This weight is the background variance divided by the total error
variance. The larger the background error, the larger the correction to the background.
Finally, as before, the analysis precision is given by the sum of the background and ob-
servation precisions [Kalnay, 2003].
Equation2.6 is equal to the Kalman Filter analysis update [Kalman, 1960]. Equation2.6
bares the same form for multidimensional problems, in whichTb andTa are three dimen-
sional fieldsxb andxa of the order of 108 [Trevisan and Palatella, 2011] andTo is a set of
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observationsyo of the order of 105 or 106 [Kalnay, 2003]. The error variances are then
replaced byerror covariance matrices, and the optimal weight by theKalman gain matrix
W [Kalnay, 2003]:

xa = xb +W[yo − H(xb)] (2.8)

where

W = BHT(HBHT + R)−1 (2.9)

H is theforward observational operatormapping from model space into the observational
space and thus converting the background field into “first guesses of the observations”
[Kalnay, 2003]; H is its linearized form;B andR are the respective background and ob-
servational error covariances of differing dimensions, transformed into the observational
or model phase spaces with the help ofH.
We end this chapter with a few final comments. First of all, Eq.2.8 and2.9 are by no
means limited to the field of NWP. Whatis unique to NWP, however, is that the back-
ground state is obtained from a short, recent forecast. Sucha forecast has a much smaller
error compared to a background state obtained from the entire climatology. This is practi-
cally feasible because forecast models are accurate enough, and the DA cycle is repeated
every few hours or so. Thus, despite a limited observationalnetwork and an underdeter-
mined problem of finding a model state in accordance with the observations, the model
state is further implicitly constrained by past observations. The DA cycles “keep” the
model close to the truth.
The second important point is connected to the error covariance matrices. The observa-
tional errors are reasonably assumed to be uncorrelated, sothat the matrixR is diagonal
[Kalnay, 2003]. On the other hand, the background error covariance matrixB reproduces
the forecast error variance along its diagonal, but also thecross-correlation of forecast er-
rors in its off-diagonal elements. This detail is crucial, because it allows the inference of
correlations between variables and grid points [Kalnay, 2003]. In this way, even variables
/ grid points that have not been observed are updated due to their correlations with other
observed variables/ grid points. Observational information ispropagatedfrom observed
to unobserved “regions” of the model by means of the forecasterror structure, achieving
dynamical consistence. Coupled data assimilation schemesare still in their infancy, but
their goal is to propagate observational information across separate, but coupled compart-
ments, e.g. the ocean and the atmosphere. In s2d prediction,compartments are currently
assimilated with observations and initialised separately. This can lead to dynamical in-
consistencies in the analyses, making forecasts more vulnerable to initialisation shocks.
Finally, forecast errors, i.e. the entries of the matrixB, are unknown. The NMC method
[Parrish and Derber, 1992] estimates them by comparing 12h and 24h forecasts, and treat-
ing the 12h forecast as the “truth”. The assumption is that the model is a perfect represen-
tation of the underlying real atmospheric dynamics.



3 Methods: A research test bed for the
initialisation of s2d prediction

3.1 Research objectives

We will begin this section by restating the objectives of ourresearch already discussed in
the Introduction. Our research is composed of two main research lines. The first line is
related to the relative performance of Anomaly and Full Field Initialisation under differ-
ent scenarios. The second line investigates the performance of advanced schemes.
The first branch of the first line is the comparison of Anomaly and Full Field Initialisation
for different observational error, as well as different observational distribution scenarios.
We investigate how initialisation limited to individual “oceanic” or “atmospheric” model
compartments affects the performance of either algorithm.
The second branch of the first line explores the role of parametric model error on the rel-
ative performance of both algorithms. Anomaly Initialisation has been devised to tackle
the effects of drift on forecast skill [Magnussonet al., 2012]. Drift arises from errors in
the model. Thus, studying the effects of model error on the different algorithms’ forecast
skill is the foundation of any justifiable comparison.
The first branch of our second research line is the study of an advanced initialisation
scheme that intends to propagate observational information of partially initialised sys-
tems to the whole model domain according to the forecast orbackgrounderror structure
of the model. Least Squares Initialisation (LSI) is based onstandard practices in data as-
similation (see Sect.2.6) common in numerical weather prediction, from which it derives
its name. We propose the use within a climate prediction context by replacing the forecast
error covariance matrix with the covariances of the model anomalies.
The second branch of our second research line studies the performance of an online drift
correction technique applied during the forecast run afterinitialisation. Exploring the Pa-
rameters Uncertainty (EPU) is designed to estimate, and subtract, the forecast bias related
to parameteric model error. This is done over short time intervals in which a linear ap-
proximation of the forecast error can be justified.
In order to meet the objectives,Carrassiet al. [2014] have developed a unified formal-
ism using notation and concepts of data assimilation theoryfrom which all of the above
schemes can be derived, described in the following sections3.2, 3.3and3.4. Our research
is carried out using a simplified dynamics, introduced in Sect. 3.5, for better control and
a statistically robust analysis. The experimental setup follows in Sect.3.6. Verification
of skill, and other measured quantities are summarized in Sect. 3.7. Finally, our setup
requires an understanding of the stability features of the dynamical system. Section3.8
covers the stability analysis of the systems we use. The methodology and experimental
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setup introduced in this chapter is consistent withCarrassiet al. [2014].

3.2 Problem framework

In the following section we will formalise the problem and state the assumptions upon
which our setup is based. We write the prognostic climate model under the form of an
autonomous dynamical system1:

dx
dt
= F(x, λ) (3.1)

wherex andλ are the state and parameter vectors of dimensionI andP respectively. We
define a true solution that will represent a “target”, which the models shall seek to predict.
We call it “the nature”. We assume the nature to be given as

dxnat

dt
= F(xnat, λnat) +G(xnat, λnat) (3.2)

where |G| << |F|. The termG represents the processes in nature that are not (well)
represented in the prognostic models. Note that it does not account for errors arising from
unresolved subscales, a weighty source of error in real climate models. Hence, model and
nature span the same phase space of dimensionI . In our experiments, we shall limit our
focus to model error originating from parameter misrepresentation only, i.e.δλ = λ− λnat

andG = 0.
We further assume that observations forming a vectoryo

i = yo(ti) of dimensionM are
available at equally spaced timesti = iτ, i = 0, 1, ..., whereτ is a fixed time interval
between successive observations. In typical applications, the observations vector has a
much smaller dimension than the model state vector, i.e.M << I . The observed variables
are assumed to be unbiased, affected by a Gaussian white noise of zero mean and standard
deviationσo, i.e. ǫo ∈ N(0,σo).

yo = H(xnat) + ǫo (3.3)

whereH is the observation operator mapping from the nature to the observational sub-
space of the model domain. In this formulation, the observational error accounts for both
the instrumentational as well as the representativity error2 connected toH [Kalnay, 2003].

1A dynamical system is prescribed by a fixed rule that determines the time dependence of a point in
geometrical space. It is autonomous if this rule is time-invariant [Ott, 2002].

2Localised observations undergo value fluctuations subjectto subscalar dynamics not represented in the
model. Therefore, observations can misrepresent larger scale model dynamics they are intended to
sample. This leads to arepresentativity error[Kalnay, 2003].
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3.2.1 Excursus: Bias is induced by model errors alone

The following derivation can be found inCarrassiet al. [2008]. We can write an expres-
sion for the forecast bias at timet as follows:

ebias(t) = e f (t) = x f (t) − xnat(t) (3.4)

whereebias signifies the bias,e f the forecast error, and the overbar indicates the mean over
an ensemble of initial conditions. The drift is given by a time derivative, i.e. the slope, of
the bias.

d(t) ≔
d
dt

ebias(t) (3.5)

We now illustrate that these quantities are caused by errorsin the model alone. The
forecast error at timet is

de f (t)
dt
=

dx f (t)
dt
−

dxnat(t)
dt

= F(x f , λ) − F(xnat, λnat) (3.6)

Let us first assume that the model is perfect, i.e.λ = λnat. Hence,

de f

dt
= F(x f , λnat) − F(xnat, λnat) ≈

∂F
∂x
|x f · e(t) (3.7)

where we have linearized for small errors. We can solve this differential equation by
separation of variables:

ln e f =

∫ t

t0

∂F
∂x
|x f dt (3.8)

This can also be written as

e f (t) =M · e f (t0) (3.9)

whereM = exp(
∫ t

t0
∂F
∂x |x f dt) is the linear model propagator. If the initial conditions are

unbiased, i.e.e f (t0) = 0, then

ebias(t) = e f (t) ≈M · e(t0) =M · e(t0) = 0 (3.10)

We have shown that in the perfect model setup, for unbiased initial conditions and under
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a linear hypothesis, no bias or drift occurs.
Let us now assume that our model equations are subject to parametric error. Hence,
λ , λ

nat, δλ = λ − λnat. Then,

de f (t)
dt
= F(x f , λ) − F(xnat, λnat) ≈

∂F
∂x
|x f · e(t) +

∂F
∂λ
|λ · δλ (3.11)

Following similar steps as earlier, we obtain

e f (t) ≈Mt,t0 · e(t0) +
∫ t

t0

Mt,τ
∂F
∂λ
|x,λδλdτ (3.12)

where the first term is the general solution and the second term comprises a specific solu-
tion of the differential equation. Assuming again unbiased initial conditions,

ebias(t) = ef (t) ≈
∫ t

t0

Mt,τ
∂F
∂λ
|x,λδλdτ (3.13)

Equation3.13gives the bias evolution in the presence of unbiased initialconditions, and
model error coming only from misrepresentation of parameters. The linear analysis rep-
resents a good approximation for small errors at short times. We can thus conclude that in
the case of parametric errors and unbiased initial conditions, the drift can only be caused
by model deficiencies.

3.3 Standard initialisation approaches

We follow the formulation byCarrassiet al. [2014] of the standard initialisation algo-
rithms for s2d prediction using the notation and concepts ofdata assimilation. Accord-
ingly, the resulting initial statexa obtained after implementation of the initialisation pro-
cedure is called theanalysis. In the absence of an initialisation procedure, the predictions
are initialised on abackgroundstatexb, which is obtained from a long control run of the
model after a transientspin-upperiod. Thus, the background state is by definition a state
of the model,xb := xm. We shall assume that the observation operator is linear, given by
a M × I matrix,H.

3.3.1 Full Field and Anomaly Initialisation

The Full Field Initialisation approach reads as follows:

xa = xb +HT [yo −Hxb] (3.14)



Chapter 3. Methods: A research test bed for the initialisation of s2d prediction 35

On whichever grid points the observations are available, the background state is replaced
by the observations. Where they remain unavailable, the background state is left un-
changed. The term in the square brackets reveals the observational update to the back-
ground, also referred to as theinnovation(see Sect.2.6). If the observations are sampled
at the grid points of the model and are measured directly, theobservational operator is
diagonal, its only entries encompassing the terms one or zero. If the entire system is ob-
served, i.e. observations are available at all grid points,the observational operator is equal
to the identity,H = I.
Similarly, for Anomaly Initialisation we obtain the equation

xa = xb +HT [ypso−Hxb] (3.15)

where the observations are merely replaced by pseudo-observations

ypso= yo − (ȳo −Hx̄b) (3.16)

The overbars indicate a time average, and the term given in brackets in Eq.3.16 is the
(negative) bias. This is easily shown in the case of full observational coverage of the
system:ȳo = x̄nat andHx̄b = x̄b, hence (̄yo −Hx̄b) = x̄nat − x̄b = −ebias. The fact that it is
negative owes to the definition of the bias in Eq.3.4.

3.3.2 Properties

The initial, oranalysiserror can be written asea = xa − xnat(t0). Assuming for simplicity
observation of the full system (i.e.H = I) and using Eq.3.14and3.15, the analysis errors
for the respective algorithms are:

ea
FFI = eo, ea

AI = eo + ebias (3.17)

whereea, eo andebias stand for the analysis and observational errors, and the bias respec-
tively. Under the assumption of unbiased observations, themean analysis errors sum up
to:

ēa
FFI = 0, ēa

AI = ebias (3.18)

wheras for the initial root-mean-square error we get:

RMS Ea
FFI = σ

o, RMS Ea
AI ≈

√

σo2
+ ebias2

= σo

√

1+
ebias2

σo2 (3.19)
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In real applications the bias is usually larger than the observational error (ebias >> σo).
In Eq. 3.19we can see that the analysis rmse of AI in this case is much lesssensitive to
the observational error. Thus, the mean initial error of FFIis reduced after refinements
in the observations, whereas the mean initial error of AI is effectively reduced when the
prognostic model is improved.
On short forecast time scales such as in numerical weather prediction, efficiently reduc-
ing the initial error is desirable. For longer forecast horizons such as in s2d prediction
for which growth of random error has already saturated, error due to model deficiencies
plays a larger role. Therefore, the above stated initial error properties need not be deci-
sive. Anomaly Initialisation intends to circumvent long-term drift, in the case of success
resulting in a slower error growth rate despite a large initial error.

3.3.3 A word on nudging

A model can respond with a rapid initial adjustment to initial conditions that are incon-
sistent with its climate. It is prone to occur with Full FieldInitialisation, when natural
observations do not comply with the model, and is often referred to as a dynamical shock
[Magnussonet al., 2012]. Such a shock can sometimes be remedied using Anomaly Ini-
tialisation, but not if the structure of the observed anomaly is still, e.g. geographically,
inconsistent [Magnussonet al., 2012]. A different approach has been adopted from syn-
chronisation theory [Bocalettiet al., 2002], known asnudging. The idea is tonudgethe
model towards the desired state by relaxing it to a limited set of observations over a period
of time. This is a common initialisation procedure for the ocean, in which it is relaxed
towards observed SSTs [Magnussonet al., 2012]. We do not assess the performance of
this scheme in our study, but have added it for completion.
Nudging consists of the addition of a term to the prognostic equations that acts like an
extra coupling term. The strength of the coupling 1/τ is expressed as a relaxation time
scale, depending on the properties of the variable chosen tobe affected by the nudging.
The time scaleτ should be large enough to avoid a dynamical shock, but small enough
to balance error growth [Hoke and Anthes, 1976]. The equation for Full Field Nudging
(FFN) can be written as

dx
dt
= F(x) +HTQ[yo

i −Hxb] t ≤ tinit (3.20)

with Q being the diagonalM × M nudging matrix containing entries in units of time−1.
yo

i signifies the set of nudged observations (or their interpolations), with i = 1, 2, ... cor-
responding to their succession. The initial conditionxa is obtained through integration
up to the initialisation time, i.e. the start date,tinit . For Anomaly Nudging (AN), the
observations are merely replaced by the pseudo observations in Eq. 3.16. FFN has been
implemented operationally byMagnussonet al. [2012] and AN by Smith et al. [2007,
2013] to nudge oceanic variables.
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3.4 Advanced schemes

In this section we follow the formulation byCarrassiet al. [2014] of two advanced al-
gorithms that comprise the second main line of our research.Least Squares Initialisation
(LSI) has the aim of improving the initial conditions of partially initialised systems by
utilizing the information from observations of limited subspaces of the model domain,
and propagating it to the entire model space by means of an approximationBm of the
background error covariance matrixB. The approximationBm contains the information
on the covariances of the model anomalies in its off-diagonal elements. Anomalies of dif-
ferent variables and different geographical locations are often linked, and the knowledge
of one such anomaly can inform a guess about another anomaly.(see Sect.2.6 on data
assimilation practices). The background error covariances are, in reality, time-dependent
(e.g. different summer/ winter anomaly structures). Given thatB has a dimension of
I × I with I of the order of 108, the computational requirements are enormous. We use a
weaker time-invariant approximation.
Exploring the Parameters Uncertainty (EPU) is a drift correction technique applied dur-
ing the forecast run after initialisation. It approximatesthe forecast bias originating from
parametric model error over short time intervals that are congruent with the hypothesis
of linearity. The approximation is based on a guess strategythat samples parametric er-
rors ocurring within the range of parametric uncertainty. The forecast bias is subtracted
successively over the forecast run.

3.4.1 Least Squares Initialisation

Full Field (Anomaly) Initialisation replaces the background state with observations (ob-
servational anomalies) wherever available, and leaves it unchanged elsewhere. Thus, ob-
servations (observational anomalies) are not weighed according to their accuracy, but
rather treated as if they were perfect. Furthermore, discrepancies can arise e.g. between
neighbouring grid points if some remain unchanged. Data assimilation algorithms have
been conceived in order to obtain a best estimate of the system given the relative accura-
cies of the observations and the background, as well as minimise inconsistencies between
the observational and background information. Thesefirst and second goalscan be con-
sidered as separate, but they are both tackled using the samebackground error covariance
matrix B. This works becauseB contains the error information about the accuracy of the
background along its diagonal; in its off-diagonal elements it contains the information
about the correlation between different model variables, grid points, and levels (see Sect.
2.6).
LSI is based on a minimisation of the analysis error covariance, given the backgroundB
and observational errorR covariances. The analysisxa is obtained from a linear combi-
nation of the background statexb and the observational update [yo −Hxb]:

xa = xb + BHT [HBHT
+ R]−1[yo −Hxb] (3.21)
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The observational update is weighted according to the relative errors of both sources of in-
formation, where the relative errors are contained in the weighting termBHT [HBHT

+R]
(see Sect.2.6). Observational errors from different instrumentation are known, and typ-
ically uncorrelated, soR is assumed and set to be diagonal. However, the determination
of B is not as simple, and will be explained in the following.
Recall from Sect.2.6that in the context of NWP in which Eq.3.21holds, the background
statexb is obtained from a short-time forecast. The model is sequentially updated with
observations according to Eq.3.21, and kept close to the “true” state. The important detail
is that the forecast becomes the background in the followingDA cycle. Thus, the back-
ground error covariance is obtained from the forecast errorcovariance. The background
error after a short-time forecast is then defined asB = (e f )(e f )T = (x f − xnat)(x f − xnat)T ,
wheree f is the forecast error. Applying Eq.3.21 in the context of s2d prediction, the
background statexb is now obtained after a long control run of the model. Therefore,
NWP methods for the estimation ofB no longer hold. Instead, Least Squares Initialisa-
tion is based on an approximation ofB:

Bm = α(x − x̄)(x − x̄)T (3.22)

where the overbars indicate long climatological time averages, andα can be described as
an adjustment coefficient. Eq. 3.22approximatesB using the covariances of the model
anomalies. The assumption is that the model is unbiased, theweakness of which is some-
what compensated withα. With regards to thefirst goal and forα = 1, the diagonal
elements ofBm reproduce the variance of the climate, underlining thatxb is a random
state of the climate associated with a large error equal to the climate variance. The obser-
vations are always more accurate in comparison. Thus, the function ofBm is not primarily
a representation of the accuracy of the background, which would have been in accordance
with the first goal. The aim of Eq. 3.22 is to find a representation of the correlations
between grid points and variables in its off-diagonal elements, in order to propagate in-
formation to unobserved domains of the model, and reduce inconsistencies. This is in
line with thesecond goal. Notice also thatBm is time-invariant. The computational re-
quirement of a time dependent background covariance matrixfor s2d prediction would be
too large.Bm is obtained from a single, long control run of the model, and can be used
without further computational effort for initialisation. The presence of a climate change
would further limit its performance.
Smith and Murphy[2007] have applied a similar strategy in the initialisation of the ocean.
In our study we implement LSI under scenarios in which observed / unobserved model
domains are represented by entire model compartments. In this situation LSI propagates
observational information across model compartments, which is an implicit goal of cou-
pled data assimilation schemes. Very advanced schemes willemploy a time-dependent
error covariance matrix.
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3.4.2 Exploring the Parameters Uncertainty (EPU)

Under the assumption of unbiased observations, and using the framework set in Sect.3.2,
we show in Sect.3.2.1that biases in the forecasts are caused by model deficienciesonly.
In our online drift correction approach, we focus on model deficiencies related to errors
in the model parameters alone.
In Sect.3.2.1we found an expression for the evolution of the bias:

ebias(t) = e f (t) ≈
∫ t

t0

Mt,τ
δF
δλ
|x,λδλdτ (3.23)

The approximation in Eq.3.23is due to the assumption of linearity. In realistic applica-
tions it cannot be solved, because the dimensions of the models involved are huge. We
can expand Eq.3.23in a Taylor series up to the first order in time. Then,

ebias(t) ≈
δF
δλ
|x,λδλ[t − t0] (3.24)

Eq. 3.24represents an approximation of the bias over a short time interval. The accuracy
of the approximation will depend on the time duration of the linear regime that is pro-
portional to the largest (in absolute value) Lyapunov exponent of the dynamics [Nicolis,
2003].
The principle behind EPU is to subtract short time estimations of the bias, using Eq.3.24,
successively over the entire forecast run:

xun(ti) = xun
i = x f

i − ebias
i = xi − Ci∆TBias = xi −

δF
δλ
|xi−1,λδλi∆TBias (3.25)

wherexun represents the correctedunbiasedforecast state;∆TBias signifies the bias cor-
rection time interval;ti = i∆TBias for i = 1, 2, ...; and the compact formx(ti) = xi is used
to simplify the notation. The parameter vectorλ is fixed over the entire model run, butδλi

is the sampled parametric error at timeti.
Equation3.25introduces the operatorCi =

δF
δλ
|xi−1,λδλi. Its first termδF

δλ
describes the func-

tional dependence of the model on the uncertain parameters,which changes with the state
of the model. Thus, it is a rectangular matrix projecting parametric error into the phase
space of the model, with rows and columns corresponding to the dimensions of the state
and parametric error respectively. It can be computed at anytime along the model inte-
gration, constrained only by the model’s dimensionality incase of large systems.
The second term of the operatorCi relates to the parametric error vectorδλ. It is by nature
unknown, and is sampled from the range of uncertainty∆Λ = (λmin, λmax), that we assume
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to have been identified, according to

δλi ∈

{

U(0, λmax− λ̄), if λ > λ̄

U(λmin − λ̄, 0), if λ < λ̄

where the indexi is associated with successive time intervalsti = i∆TBias for i = 1, 2, ...;
U(a, b) is the uniform distribution in the interval (a, b); λ̄ is the mean value of the range
∆Λ. λ̄ plays the role of the “most probable” parameter, where in thecase ofλ > λ̄ the
parametric error is sampled as positive, and forλ < λ̄ it is sampled as negative. Its role
is to discriminate between over- and under-estimation of the unknownλnat. However,
λ

nat
, λ̄ in general, so that the above guess strategy might erroneously select positive or

negative errors.

3.5 The idealized coupled model

We base our experiments on an idealized coupled model introduced byPeña and Kalnay
[2004]. Three versions of the Lorenz 3-variable model [Lorenz, 1963] are coupled in
order to mimic the behaviour of subsystems of fast and slow time scales:

dxe

dt
= σ(ye − xe) − ce(S xt + k1)

dye

dt
= rxe − ye − xeze+ ce(S yt + k1)

dze

dt
= xeye − bze

dxt

dt
= σ(yt − xt) − c(S X+ k2) − ce(S xe + k1)

dyt

dt
= rxt − yt − xtzt + c(S Y+ k2) + ce(S ye + k1)

dzt

dt
= xtyt − bzt + czZ

dX
dt
= τσ(Y− X) − c(xt + k2)

dY
dt
= τ(rX − Y− S XZ) + c(yt + k2)

dZ
dt
= τ(S XY− bZ) − czzt

(3.26)

The capital letters represent the slow system referred to asthe “ocean”, and the lower
cases represent variables corresponding to the fast compartments referred to as the “ex-
tratropical atmosphere” (denoted with a subscripte) and the “tropical atmosphere” (with
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subscriptt). σ = 10,b = 8/3, andr = 28 are the standard values of the Lorenz system;ce

is the coupling strength of the “extratropical atmosphere”with the “tropical atmosphere”,
c is the coupling strength of the “tropical atmosphere” with the “ocean” in thex- and
y-variables, andcz the coupling strength of the “tropical atmosphere” with the“ocean” in
thez-variables;k1 = 10 andk2 = −11 are “uncentering” parameters introducing a phase
lag between subsystems, andS andτ represent spatial and temporal scaling factors re-
spectively. Note that whenc = cz = 0, the original Lorenz model is recovered.
The slow feature of the “ocean” is effectuated by settingτ = 0.1. In accordance with
[Peña and Kalnay, 2004], the spatial scaling factor is set toS = 1. However, the relative
amplitudes of the compartments are characterized by the specific values of the coupling
parameters in spite of the unit scaling factor. The choice ofc = cz = 1 results in a strongly
coupled case reminiscent of the tropical El Niño-Southern Oscillation (ENSO), in which
the “slave” “tropical atmosphere” has a small amplitude andundergoes regime changes
clearly modulated by the slow “ocean” compartment. The “extratropical atmosphere” is
weakly coupled (ce = 0.08) with the “tropical atmosphere” component of the “ENSO”.
The model integration is carried out using a second order Runge-Kutta scheme with time
stepδt = 0.01. We establish a time definition on the basis of the durationof an ocean cy-
cle, so that one “year” corresponds to 240 time steps. The simulated “ENSO” is the defin-
ing feature of our model, on the basis of which we expect to assess long-term predictabil-
ity. Our time definition is connected to this feature throughthe cycles of the “ocean”.
Figures3.1(a), 3.1(b) and 3.1(c) display the attractors of the “ocean”, “tropical atmo-
sphere”, and “extratropical atmosphere” respectively. These have been obtained after
omittance of a long transient spin-up and visualizing forty“year”-long trajectories in
phase space. The “ocean” oscillates between a “normal” regime lasting typically three
to twelve “years”, and an “El Niño” regime lasting only one “year”. The “tropical at-
mosphere” is visibly faster with a smaller amplitude. The “extratropical atmosphere” is
close to the characteristical Lorenz model due to its weak “extratropical” coupling. Figure
3.1(d)displays the time series of thex-variables of all three compartments, illustrating the
differences in scale as well as frequency between the slow, large-amplitude “ocean” and
the faster “atmospheric” compartments.
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Figure 3.1: (a)-(c): Attractors of the 3-component coupled system. Thex-, y- andz- axes
correspond to the same variables. The “ocean” (a) is strongly coupled to the “tropical
atmosphere” (b), which in turn is weakly coupled to the “extratropical atmosphere” (c).
The time series of thex-variable of all three compartments are plotted in (d).
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3.6 Experimental Setup

Our experimental setup is based on the standard observationsystem simulation experi-
ment (OSSE [Bengtssonet al., 1981]) configuration in which the simulated nature evo-
lution is sampled at discrete times to generate the series ofsimulated observations. The
idealized coupled model specified in Sect.3.5is integrated over an initial period of 60 000
time steps in order to reach a state on its own attractor. Thisperiod is also called the spin-
up. Starting from the new initial condition given after the spin-up, the model is integrated
over a trajectory of forty “years”. This trajectory is assigned the role of “the nature”,
which will be targeted by the predictions. Thus, the nature is prescribed by a matrixN of
the dimension 9× 9600, its rows and columns determined by the number of variables and
time steps respectively. For any statexnat

i of the nature,xnat
i ∈i N, with i ∈ {1, ..., 9600},

[xnat
i ] = [9 × 1], and∈i signifying that the vector belongs to theith column of the matrix.

Values for the “observations” of the variables are generated by sampling the nature tra-
jectory and then adding a Gaussian white noiseǫo, with zero mean and standard deviation
vectorσo ∈ N(0,σo). σo is set to a percentage of the system’s natural variability, with
dimension [σo] = [9×1]. The observations are distributed homogenously every “month”,
i.e. every twenty time steps, for the first thirty years. Theyare prescribed by the matrixO
of dimension 9× 360, and given byyobs

l ∈l O, with l ∈ {1, ..., 360} and [yobs
l ] = [9 × 1].

We can now make a prediction of the nature by running the dynamical system starting
from an observation. In order to simulate the fact that real climate models are imperfect,
we introduce errors in the idealized coupled dynamics givenby Eq. 3.26, and refer to
these as erroneous models. Erroneous models are generated through the misspecification
of the “tropical” coupling parametersc andcz, or the forcing parameterr. Note thatr
plays the role of the Rayleigh number [Strogatz, 2000], which is an important parameter
describing the balance between bouyancy force on a pocket offluid as a result of ther-
mal expansion with the loss of energy to thermal diffusion and viscosity [Hilborn, 1994].
However, it is directly connected to the temperature difference between the bottom and
top of the convection cell described by the Lorenz equations[Hilborn, 1994]. A larger
r corresponds to a larger difference in temperature, i.e. a larger forcing. Both coupling
parameters are sampled from the range of (0.2 − 1.5) with step 0.1, and the forcing pa-
rameter from (29− 68) with step 1.
Similarly to the nature trajectory, a control run is obtained by integrating the erroneous
model for forty “years” after a spin-up period. The control run represents a reference
point with regards to the assessment of forecast improvement after initialisation. It also
gives the background state of the systemxb, which is needed if the system is only partially
initialised.
Following the typical hindcast format of climate prediction studies (see Fig.3.2or Sect.
2.5), ten-“year” predictions are made every “month” over thirty “years”, summing up to
a total hindcast period of forty “years” coinciding with thelength of the nature trajectory.
The predictions are initialised using the “monthly” observational information according
to either FFI or AI, comprising a total of 360 start dates. Theforecasted trajectories are
prescribed by the matrixFp

k , where the subscriptk specifies the erroneous model, and the
superscriptp = 1, 2, ..., 360 signifies the associated start date. A forecast state is given by
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Figure 3.2: Schematic of the experimental setup in phase space. The observations (red
crosses) are sampled each month from the nature (green line)and used to initialise the
forecasts (blue lines). The model control run is shown (orange line) systematically below
the nature, indicating a model bias.

x f
j ∈ j Fp

k , with j ∈ {1, ..., 2400} and [x f
j ] = [9×1]. In the case of a fully initialised system,

the observation operator is given byH = I and [H] = [9 × 9]. If a single compartment is
initialised, its dimension reduces to [H] = [3 × 9]. The model biasesHx̄m− ȳo needed for
the AI scheme (Eq.3.15) are estimated using the sample of 360 observations/ start dates,
as well as the corresponding sample of the control run.
The model errors lead to different forecast biases, allowing for a kind of scenario control
of models. An important constraint for the sampled parametric errors is the similarity
of the stability features with those of the nature. The sampled models must be suitable
representations of the nature on some specified level. This level is given by the degree
of instability of the model compartments, which is reproduced by the positive Lyapunov
exponents of a dynamical system. The instability features of a dynamical system give a
notion of its predictability. A fair assessment of the relative forecast skill of AI and FFI
with respect to the model bias requires similar predictability of the models involved.
The nature has two positive Lyapunov exponents,γnat

1,2 = 0.9063, 0.3150. A total of 109
erroneously coupled models are sampled according to the parameter range given above,
and under the constraint of having similar positive exponents. We refer to this set of mod-
els as{c, cz}-models. The forty erroneously forced models are referred to asr-models.
See Sect.3.8for the analysis of the stability features of the selected erroneous models.

3.7 Measured quantities

3.7.1 Verification of forecast skill

The field of climate prediction is populated with different types of skill scores [von Storch
and Zwiers, 1999]. The phase space of our deterministic coupled model is euclidean,
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allowing us to use a skill measure based on the distance of theinitialized model trajectory
from the nature trajectory. This distance is given at a givenlead time as an average
root-mean-square error (RMSE) over all variables, where the RMSE of the variables are
normalized with respect to their natural variances in orderto account for differences in
amplitude:

RMS Etot(t) =
9

∑

i=1

√

√

(ef
i (t))2

(σi)2

/

9 =
9

∑

i=1

√

√

(xf
i (t) − xnat

i (t))2

(σnat
i )2

/

9 (3.27)

where i = 1, ..., 9 indicates the variables, and the overbar indicates the mean over the
sample of predictions/ initial conditions. Recall that in Anomaly Initialisationthe bias is
added onto the observations, i.e. the initial distance to the nature trajectory is larger. In
order to facilitate a fair comparison between AI and FFI, wedebiasthe total RMSE given
in Eq. 3.27by subtracting the bias (Eq.3.4in vector notation):

RMS E(t) = RMS Edeb
tot (t) =

9
∑

i=1

√

√

(ef
i (t) − ebias

i (t))2

(σi)2

/

9 (3.28)

The root-mean-square skill score relates the forecast skill to a reference skill given by the
non-initialised model control run, i.e. the background:

RMS S S(t) = RMS S Sdeb
tot (t) = 100

(

1−
RMS Ef (t)
RMS Eb(t)

)

[%] (3.29)

An RMS S S(t) > 0% means that the sample of 360 initialised predictions has better skill
than the equivalent sample of non-initialised predictions.

3.7.2 Quantifiers of model bias and drift

We have defined the bias as a mean error, and the drift as the time derivative thereof, in
Eq. 3.4and3.5. Our analysis is performed on the basis of the biases of single variables, as
well as a global quantity describing the total model bias that we define as theRMS Bias.
The RMS Biasis computed by taking the average of the root mean square differences
between the model control run and nature means over all variables, normalized by their
own variances. It describes the mean size of the bias over allnine normalized variables of
the model.

RMS Bias=
9

∑

i=1

√

(x̄b
i − x̄nat

i )2

(σnat
i )2

/

9 (3.30)
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Such a “global” measure of the bias of a model allows for a broad comparison among
models with respect to a single indicator. It can be interpreted as the total shift in phase
space of the centre of the model’s attractor with respect to nature, impartial with regards to
the contribution of each variable independently. TheRMS Biascoincides with the global
normalized bias for large lead times:

lim
t→∞

9
∑

1

√

ebias
i (t)2

(σnat
i )2

/

9 = RMS Bias (3.31)

For our purposes a quantification of the drift becomes relevant. Numerically, we calculate
the drift of a variabledi by taking the absolute value of the bias within a time periodTd,
while respecting its sign and dividing by the lead time associated with this value,tmax.

dnum
i = ±

max|ebias
i (t = 0 : Td)|

tmax
(3.32)

Drift can occur slowly over s2d time scales, or very rapidly in the form of an initialisation
shock occurring due to inconsistent initial conditions with respect to the model attractor
[Magnussonet al., 2012]. The time scale with respect to which drift is investigatedis
determined byTd.

3.8 Stability analysis

The stability properties of the erroneous configurations are centered on the computation
of their spectrum of Lyapunov exponents,γi for i = 1, 2, ..., 9. The Lyapunov exponents
of a dynamical system are quantities that characterize thelinear rate of separation of
infinitesimally close trajectories (see also Sect.2.2). We now introduce a definition of the
Lyapunov exponent given inOtt [2002], followed by a more conceptual understanding
given inKalnay[2003].
The linear evolution of a perturbationz0 = δz0 is given by

z(t) =Mt,t0 · z0 (3.33)

whereMt,t0 = exp(
∫ t

t0

∂F(x)
∂x |x)dt is the tangent linear model orpropagator. z(t)/|z(t)|

gives the direction of the infinitesimal displacement of thetrajectory fromx(t), and|z(t)|/|z0|

is the factor by which it grows or shrinks.

For initial conditionx0 and initial orientation of the displacement given byu0 = z0/|z0|,
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the Lyapunov exponent is defined as

γ(x0, u0) = lim
t→∞

1
t

ln(|z(t)|/|z0|) = lim
t→∞

1
t

ln |Mt,t0 · u0| (3.34)

Assume an initial arbitrarily small sphere of perturbations of volumeV within the phase
space of ann-dimensional dynamical system. These are subject to an evolution according
to the model equations. If the system is unstable with respect to any axisi, then the sphere
will undergo growth along the axisi proportional toeγi t. An n-dimensional system is thus
characterized byn Lyapunov exponents. The total volume of the sphere|V| at timet will
be given byVe(γ1+...+γn)t.
By convention, the spectrum of exponents are aligned according to γ1 ≥ γ2 ≥ ... ≥ γn.
Therefore, if a system is unstable, at least the first Lyapunov exponent is greater than
zero,γ1 > 0. Moreover, a Hamiltonian system in which the total energy is conserved
is characterized byΣn

i=1γi = 0. For dissipative systems, the total sum of the exponents
is negative,Σn

i=1γi < 0. In this case the total volumeV approaches zero volume, i.e.
dim[V] ≤ n if the system isn-dimensional [Kalnay, 2003]. Note that the initial sphere
V in the phase space of an unstable dissipative system will evolve into an ellipsoid after
a short time. The sphere grows or decays linearly along each of the n axes in the initial
linear phase. For long times, the growth along the unstable axes continues, but the axes
are bounded by the volume approaching zero. As a consequence, in the longer nonlinear
time regime the axes of the ellipsoid fold in phase space, distorting into a banana shape.
This occurs over and over again, so that after an infinite time, the original sphere has
evolved into a structure of zero volume given by the strange attractor of the system. The
dimension of this fractal structure has been estimated byKaplan and Yorke[1979] to be

d = k+ (γ1 + ... + γk)/|γk+1| (3.35)

where the sum of the firstk Lyapunov exponents is positive, and the sum of the first
k+ 1 exponents is negative [Kalnay, 2003].

In our experiments, the positive Lyapunov exponents described by the nature are given
by γnat

1,2 = 0.9063, 0.3150. The code for calculating the Lyapunov exponents was pro-
vided to the author by his supervisors. Autonomous dynamical systems have at least
one exponent equal to zero [Kalnay, 2003], coinciding with our third exponentγ3 = 0.
This can be understood by considering the specific case of twoseparate initial condi-
tions on the same model trajectory, that on average have the same distance from ea-
chother. The dissipation of the system is given by the sum of the nine Lyapunov ex-
ponentsΣ9

i=1γ
nat
i = −28.59. This can be verified by calculating the divergence of the

system [Kalnay, 2003], divF = −2(σ+1+b)−τ(σ+1+b) = −28.5; the small difference
between both values is due to numerical error.
We have selected a sample of coupling configurations, i.e.{c, cz}-models andr-models,
on the basis that these reproduce similar stability features given by the nature. This is
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punov exponents as a function of ther.
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and right) for{c, cz}-models. Kaplan-Yorke dimension and dissipation (bottom left and
right) as a function ofr.

based on the assumption that real climate models are imperfect, but reproduce the general
behaviour of nature. The nine Lyapunov exponents for{c, cz}-models are given as distri-
butions in Fig.3.3(a). We can see that the first exponent varies only in the second number
after the decimal, in contrast to the second exponent showing changes of above 50% for
some configurations. This suggests that the first exponent represents the instability in the
“extratropical atmosphere”, which is subject to a weak and correctly reproduced coupling
parameterce = 0.08. The distribution of the second exponent is centered about a mean
of γ2 ≈ 0.2, smaller than in the nature. We also observe that about halfof the configu-
rations have a third exponent equal to zero, and the rest havea positive, but small third
exponent. Configurations that have a non-zero third exponent have a zero fourth exponent
(not shown).
In order to highlight the trend as a function of the erroneousforcing for r-models, the val-
ues are displayed with respect tor, Fig. 3.3(b). We observe an increasing trend for the first
two positive exponents with respect to the forcing, indicating a faster rate of divergence
of initially close trajectories. We further observe that almost all models have a positive
third exponent, and of significant value larger than 0.1 for very larger. The increased
instability of the erroneously forced configurations signifies a decreased predictability.
Figure3.4displays the distributions of the Kaplan-Yorke dimensionsand the total sum of
the Lyapunov exponents (top left and right panels, respectively) for {c, cz}-models, as well
as their dependence on the erroneous forcing forr-models (bottom panels). For{c, cz}-
models, the attractor dimensions vary within the range of 5.3 − 6.6, and although the
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dissipation rate appears bimodal, it varies only in the second number after the decimal.
For r-models, both quantities show trends with respect to the forcing. The dissipation rate
of the models decreases, the attractor dimensions increase.

3.8.1 Computation of Lyapunov exponents

In the following we describe the technique for numerically calculating Lyapunov expo-
nents of chaotic flows given byBenettinet al. [1980]. We first consider the first exponent
γ1. Choose an arbitrary perturbationz0 and iterate it for a long time using the tangent
linear model. Then,γ1 = limn−>∞

1
n ln(|zn|/|z0)| wheren resembles thenth iteration. If

γ1 > 0, |zn| typically becomes so large resulting in computer overflow. This is overcome
by normalizing|z| periodically at timesτi = iτ for i = 1, 2, ... whereτ is a fixed small
time interval. The magnitudesαi used for renormalization are stored in order to obtain
the largest Lyapunov exponent:

γ1 = lim
k−>∞

1
kτ
Σk

i=1 lnαi (3.36)

In practice,k is chosen sufficiently large after which convergence within an acceptable
tolerance has been reached. How do we know that we have computed the first exponent,
and not any other? First of all, the initial perturbation must have a component in the
direction of the instability associated with the first exponent. Second of all, the rate of
change associated with the first exponent is largest, so thatfor long integration times, the
direction of the instability converges towards the LeadingLyapunov Vector.
The calculation of the remaining exponents is done as follows. Recall that the sum of the
Lyapunov exponents describe a rate of change of a volume in phase space. Thus, by keep-
ing track of the evolution of a volume in phase space through successive renormalization,
one can infer the sum of the exponents. The second exponent iscomputed by evolving
a paralelogram initially spanned by two independent arbitrary perturbations|z1

o| and |z2
o|.

The iterated vectors|zn
o| and|zn

o| span a paralelogram of areaAn. The area will be distorted
in a way thatAn ∝ exp[n(γ1 + γ2)]A0, so that we have

γ1 + γ2 = lim
n−>∞

1
n

ln(An/A0) (3.37)

As with the calculation of the first exponent, the areas must be successively renor-
malized in order to avoid computer overflow. However, not only the magnitude, but the
orientation of the iterated vectors is a problem for large times, as they become more coin-
cident in the direction of dominant growth. Hence, the previous successive normalization
procedure is generalized so that at each timeτi the evolving pairs of vectors are replaced
by two orthonormal vectors spanning the same two-dimensional subspace after Gram-
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Schmidt orthogonalization. We then obtain

γ1 + γ2 = lim
k−>∞

1
kτ
Σk

i=1 lnα(2)
i (3.38)

whereα(2)
i is the paralelogram area before normalization at timeτi. γ2 can now be

deduced from Eq.3.38and prior calculation ofγ1 using Eq. 3.36. The remaining ex-
ponents are computed in the same way by choosing the dimension of the initial volume
accordingly. The calculation of any Lyapnov exponent can begenerally expressed as

γl = lim
k−>∞

1
kτ
Σk

i=1 ln(α(l)
i /α

(l−1)
i ) (3.39)

See alsoOtt [2002].





4 Results

Our results are divided into two parts, according to our two main research lines. The
relative performance of AI and FFI is studied with respect tothe initialisation of different
model compartments (Sect.4.1.1), different observational error scenarios (Sect.4.1.2),
different model bias scenarios (Sect.4.1.3), different drift scenarios (Sect.4.1.4), and
with respect to the differences between model and nature attractors (Sect.4.1.5). The last
three sections (Sect.4.1.3-4.1.5) are related to different model parametric error configura-
tions. Part two investigates the performances of LSI (Sect.4.2.1) and EPU (Sect.4.2.2).
Either the RMSE or the root-mean-square skill score (RMSSS)are used to verify forecast
skill. Both are debiased for fair comparison. Their definitions can be found in Eq.3.28
and3.29respectively. We also quantify the “global” model bias using theRMS Bias(Eq.
3.30), and the drift using Eq.3.32.
We refer to erroneously coupled/ forced models as{c, cz}- / r-models (Sect.3.6). Note that
the “extratropical atmosphere” is hardly affected by the miscoupling (i.e. almost identical
to the nature) for{c, cz}-models, but it differs from the nature forr-models. In order to
simplify our analysis where necessary, we use example configurations that represent the
general behaviour of the majority of the configurations. These are{c = 0.8, cz = 0.9} and
{c = 0.3, cz = 1.2} for {c, cz}-models, corresponding to an average and a very large value of
theRMS Biasrespectively. The positive Lyapunov exponents for either configuration are
γ1,2 = 0.9036, 0.1895 andγ1,2,3 = 0.9032, 0.2162, 0.0153, respectively. Compare these
values to those of the nature,γnat

1,2 = 0.9063, 0.3150. The second configuration has addi-
tional third positive exponent. Exampler-models are given byr = 34, 68, corresponding
to small and largeRMS Biases, and are discussed in the text where necessary.
Unless specified otherwise, and apart from Sect.4.1.2in which the observational error
scenario is varied, the observational error standard deviation is set toσo = 2.5%. The
results of Sect.4.1.1, 4.1.2, 4.1.3(in part),4.2.1, and4.2.2can be found in [Carrassiet
al., 2014].

4.1 Research line 1: Relative performance of Full Field
and Anomaly Initialisation

4.1.1 Initialisation performance with respect to differen t model
compartments

We begin by assessing the performance of AI and FFI for the initialisation of single com-
partments. In Fig.4.1, the RMSSS of AI and FFI is displayed as a function of lead time
for both example configurations after a “monthly” averaging. Initialisation is carried out

53
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either in the full system (black), the “extratropical atmosphere” alone (blue), the “tropical
atmosphere” alone (magenta), or in the “ocean” alone (green). The first point is that by
far the largest prediction skill is obtained when the systemis fully initialised. For sin-
gle compartments, it does not exceed 20% significantly, whereas for the full system the
same level of skill is reached after the 20th “month” (FFI) orthe about the 10th “month”
(AI). Initialising only single compartments, the largest as well as the longest prediction
skill is obtained for the “ocean”, with similar performancefor both AI and FFI. For time
horizons larger than 40 “months”, the skill scores for the fully initialised system and the
system initialised with the ocean alone converge, illustrating how the system’s memory is
efficiently stored in its slowest compartment. The total maximum forecast skill for long
time horizons does not, however, exceed 5%.
When the “extratropical atmosphere” is initialised, we observe a distinct difference in the
performance of AI and FFI. The longer skill after Full Field Initialisation suggests that
the initial error is efficiently reduced. The “extratropics” represent the compartment with
the largest instability and fastest error growth, and reducing the initial error helps delay
the skillful forecast horizon. In the “tropical atmosphere” we do not observe a skillfull
performance after either AI or FFI, which suggests that the stronger coupling with an
uninitialised ocean counteracts a reduction of the initialerror.
Overall, the “ocean” component is indispensable in order toretain some forecast skill for
time horizons longer than 40 “months”. On short time scales,only initialisation of the
full system results in skill larger than 20%.

4.1.2 Initialisation performance in the face of observatio nal error

One might guess that, as a general rule, a reduction of the observational error will lead
to a better forecast. This is certainly true for the ideal case of a perfect model, in which
forecast errors will in fact only come from imperfect initial conditions, i.e. a limited
observational network and observational errors. A perfectmodel with perfect initial con-
ditions will lead to a perfect forecast for all time. In practice, the forecast time horizon for
which an improvement in the initial conditions of the prediction will lead to an improve-
ment in forecast will depend on the growth rate of random errors, which is connected to
the positive Lyapunov exponents of the model replicating nature (see Sect.2.3).
In the case of Anomaly Initialisation applied in a “real” situation of an imperfect model,
the bias is added onto the observations in order to approximate the model attractor. If
the bias is significantly larger than the observational error, our original assumption that a
reduction of the observational error will result in an improvement of the forecast might
not hold. In Sect.3.3.2we derived that forebias >> σo as in the case of real applications,
the mean analysis error of AI is less sensitive to the observational error in comparison
with FFI.
Figure4.2shows the RMSSS of both algorithms as a function of the observational accu-
racy for six forecast horizons, full observation of the system, and the example model of
{c = 0.8, cz = 0.9}. We observe that the forecast skill after Full Field Initialisation deterio-
rates for large observational error scenarios, whereas Anomaly Initialisation is insensitive
to the observational error. Take note of how FFI’s advantageover AI decreases for larger
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Figure 4.1: RMSSS as a function of the forecast lead time for FFI (left panels) and AI
(right panels). Top/ Bottom panels refer to the configurations{c = 0.8, cz = 0.9} /
{c = 0.3, cz = 1.2} respectively. Different colors represent initialisation of the full sys-
tem (black), “ocean” (green), “tropical atmosphere” (magenta) and “extratropical atmo-
sphere” (blue).

forecast lead times, eventually yielding to AI for the longest forecast horizon. The ini-
tial rapid decrease of this advantage is due to fast loss of skill from the “atmospheric”
compartments that are better initialised with FFI. The yielding to AI for the longest fore-
cast horizon is due to a better performance of AI in the “ocean” in our example model,
and is in line with the findings ofToth and Peña[2007], in which their simple mapping
algorithm identical to AI results in slower error growth. For large observational errors,
AI improves over FFI at an earlier forecast horizon, seen forthe forecast horizon of 4-5
“years” in Fig. 4.2. The large observational errors result in a faster error growth rate for
FFI and an earlier yielding to AI.

4.1.3 Initialisation performance in the face of model bias

In the following section we assess the performance of both initialisation algorithms as a
function of the model bias. Introducing parametric error ina set of nonlinear coupled
differential equations results in unforseeable dynamical changes in the system. We have
described in Sect.3.8 the analysis of the stability properties and changes in attractor
structure of the differently coupled/ forced models discussed here.
Figure4.3(a)shows the RMSSS for both algorithms as a function of theRMS Biasfor
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Figure 4.2: RMSSS as a function of the standard deviation of the observational error,
σo, expressed as a fraction of the system’s natural variability. The model configuration
corresponds to{c = 0.8, cz = 0.9}. The six panels refer to six different averaging periods
and are indicated in the corresponding labels. FFI (black line), AI (red line).

erroneously coupled models ({c, cz}-models) and for the same six forecast horizons as
before. Overall, but especially in the initial stage of the forecast, the performance of
FFI shows little relation to the nominal size of the model bias. The performance of AI,
on the other hand, shows a clear dependency on the model bias within the first forecast
“year”. Although for each model FFI performs better than AI for the first forecast “year”,
both algorithms appear to converge after the second lead “year”. This points towards
comparable skill in the “ocean”, which accounts for most of the forecast skill after the
first forecast “year”. We cannot, however, confirm a systematic yielding of FFI to AI
for long time horizons as we did previously in our example model in figure4.2, even in
scenarios with larger observational errors that would favor AI.
Figure 4.3(b) shows the RMSSS as a function of theRMS Biasfor parametric model
error in r, which we refer to asr-models. Here we find the opposite behaviour to what
was observed for erroneous coupling parameters. AI outperforms FFI for short lead times
and for a progressively largerRMS Biasassociated with largerr. This improvement is
marginally observed for the second and third forecast “years”, before converging to zero
in the fourth and fifth “years”.
In Sect.4.1.2, we observed that FFI improves after an improvement of the observational
network. Here, with regards to the performance of AI, we observe two cases. The first
in which AI improves only after improving the model (Fig.4.3(a)). The second in which
the performance of AI appears to be independent of the model deficiency (Fig.4.3(b)).
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(a) RMSSS as a function of the RMS Bias for{c, cz}-models.
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Figure 4.3: RMSSS as a function of the RMS Bias for (a){c, cz}-models and (b)r-models.
The six panels refer to six different averaging periods and are indicated in the correspond-
ing labels. FFI (black line), AI (red line).
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The different behaviour of AI in Fig.4.3(a)and4.3(b)is connected to the different types
of model error, and motivates the following analysis.

4.1.4 The role of the initial shock with regards to performan ce

Figure4.4illustrates, using specific{c, cz}- andr-models, how the normalized mean fore-
cast error, i.e. normalized bias, evolves over the course ofthe predictions for the variable
zt in the r-models, and the variablext in the {c, cz}-models, which have been chosen here
for their larger magnitude in comparison with the remainingvariables. First of all, we
observe a different drift behaviour, given by the slope of the bias shown, for different
parametric errors. For{c, cz}-models, the drift is considerably slower, occuring over long
time scales. Forr-models, an increasingly large initial peak occurs for larger r, repre-
senting a rapid initial adjustment of the model to the initial conditions. This rapid initial
adjustment is reminiscent of the initialisation shock thatis often observed to follow ini-
tialisation [Magnussonet al., 2012]. We also observe that the bias increases for largerr
too.
We attempt to quantify the drift described in Eq.3.32in order to investigate a relationship
between forecast skill and drift. The drift analysis interval Td is set to one “month”. One
might object that the interval of one “month” is too small to sample the drift evolution.
On the other hand, take note of how within the first “month” therelative performance of
AI / FFI is already determined for the remaining time horizons too, justifying this focus
on the initial stage of the forecast. Furthermore, investigating the drift within the first
forecast “month” allows us to concentrate on the time scale relevant for the initialisation
shock observed above (Fig.4.4) for ther-models.
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Figure 4.5: RMSE ratio of AI / FFI (colorbar) for all nine variables as a function of the
bias on the y-axis and the initial drift on the x-axis. (a) Each coloured point in a single
panel corresponds to one of the 109{c, cz}-models. (b) Each coloured point in a single
panel corresponds to one of the 41r-models.
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Figure4.5(a)shows the RMSE ratio of AI to FFI for{c, cz}-models with regards to both
the normalized bias, on the y-axis, and the initial drift, onthe x-axis. Instead of using the
RMS Bias, we plot the bias for each variable individually. Each coloured point within a
panel corresponds to a single{c, cz}-model, making a total of 109 points in each of the
nine panels. The colour blue relates performance more in favour of AI, and the colour
red is more in favour of FFI. Take note of the different scales for each colour bar. Note as
well that all ratios are above the value of one, establishingFFI’s better performance over
AI for all {c, cz}-models.
Figure4.5(a)shows a dependence of the relative skill of AI and FFI on the model bias, as
well as an independence on the initial drift. This is visiblein the vertical colour gradient
for each variable. For large positive or negative biases, the ratio is more in favour of FFI,
corresponding to yellow/red colours at the “bottom” or “top” of each single scatter plot,
and blue colours in the centre of the scatter plots around zero bias. No particular relation-
ship can be observed with regards to the initial drift, with exception of thezt-variable, in
which a larger drift corresponds to ratios in favour of FFI.
Figure4.5(b) is identical to the previous figure, but shows the RMSE ratio of AI to FFI
for the 41r-models. Note how the colour scales have shifted to values below one, corre-
sponding to a better performance of AI as observed previously in figure4.3(b). The most
important feature we observe is a strikingly clear relationship between the initial drift and
the relative performance of AI and FFI, evident in the horizontal colour gradient. With
increasing positive or negative drift, the colour ratios change from red to blue, with only
a few exceptions to this general trend.
We also observe that forr-models, thex- andy-variables have smaller biases, but a larger
initial drift compared to those of the{c, cz}-models. On the other hand, thez-variables
show very large biases, making it apparent that theRMS Biasfor r-models in figure
4.3(b)is due mostly to the large biases in thez-variables. One might infer that the large
bias in thez-variables induces an initialisation shock that is manifest in a large initial drift
also in the remaining variables. If we calculate the initialdrift in the same way but over
a three “month” period, we find that for the “atmospheric”x- andy-variables the large
initial drift even changes sign (not shown), indicating an erratic behaviour that further
supports the hypothesis of a dynamical shock mechanism. Thedrift of the z-variables is
exemplified in Fig.4.4, showing an initial monotonic “surge” towards a peak largerthan
the mean, followed by a compensatory oscillation.
We have so far observed that Anomaly Initialisation fails for the erroneously coupled
models, but succeeds for the erroneously forced models (Fig. 4.3). The analysis of
the initial drift has indicated that an initialisation shock occurs forr-models, which AI
successfully counter-balances. In the following section we look for further evidence by
visualising the respective model and nature attractors.

4.1.5 The role of the attractor

In order to investigate our hypothesis that AI outperforms FFI in the face of an initialisa-
tion shock, it helps to visualise the model and nature attractors and observe the predicted
trajectories after initialisation. We have seen that the initial shock occurs for errors in the
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Figure 4.6: Three-dimensional view of the “extratropical” attractorsof the model (red)
and nature (blue) forr = 68 (left panels) andr = 34 (right panels). Top panels show the
initial conditions of AI (black triangles) and FFI (green stars). Middle panels show the 1-
“month” predictions initialised with FFI. Bottom panels show the 1-“month” predictions
initialised with AI.
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forcing, which is why we first focus onr-models. The top left panel of figure4.6displays
the 40-“year”climatologicaltrajectory (i.e. model control run) of the “extratropical atmo-
sphere” of an exampler-model in red (r = 68), along with the simulated nature in blue.
The caser = 68 shows the largest bias among all ther-models considered. The green
stars depict the monthly sampled observations that comprise the 360 initial conditions for
FFI; the black triangles depict the initial conditions for AI.
First of all, we observe similarity in shape between the model and nature attractors. The
model attractor differs in a larger variance accounting for its larger size with respect to the
nature, as well as a “translation” along thez-axis in phase space that comprises its bias.
We have depicted the “extratropics” for easy visualisation, but the behaviour is qualita-
tively the similar for the ttropical atmosphere” and “ocean”. The figure illustrates how
Anomaly Initialisation constitutes a “translation” of theset of observations closer to the
model attractor.
The middle and bottom left panels of figure4.6show the one “month” long predictions for
FFI and AI respectively starting from the initial conditions displayed in the top left panel.
Clearly, initialisation further away from the model attractor in the case of FFI results in the
systematic favoring of trajectories along or even outside of the “wings” of the attractor.
The outer wings of the attractor can be considered as the model’s more “extreme climate”,
for the reason that it is both largest in amplitude, and rare.Within the 40-“year” clima-
tological model trajectory, this region of the attractor has only been visited once or not at
all. This serves as an extreme example of dynamical forecasterrors resulting from drift/
model error. In particular, the “overshooting” of the mean error of thez-variable observed
in figure4.4 is a one-dimensional manifestation of the model’s dynamical compensatory
response to an initialisation far outside the attractor. After Anomaly Initialisation (bottom
left), the predictions are clearly much more in line with themodel climate, and as a con-
sequence more in line with the natural climate after a bias correction too.
The case in which model and nature attractors are as “far away” from each other as they
appear forr = 68 certainly seems unrealistic. Nevertheless, the right panels of figure4.6
depict analog behaviour for a model withr = 34, which corresponds to a distinguished,
but smaller model bias, and for which AI still outperforms FFI. The evolution of the mean
error of thez-variable of this model has been shown previously in figure4.4too.
Making clear inferences from visualising attractors of the{c, cz}-models and their predic-
tions is more complicated. The individual attractor structures differ significantly from one
another, and from nature. We are also restricted to the “tropical atmosphere” or “ocean”,
because the “extratropics” are unaffected by the errors in the coupling.
The top panel of Fig.4.7displays a single case for the example model{c, cz} = {0.8, 0.9}
and nature attractors of the “tropical atmosphere” in red and blue respectively, along with
the initial conditions for FFI as green stars and for AI as black triangles. The perspective
has been altered for better visualisation (compare with Fig. 3.1). We observe a subtle,
but important difference between the model and nature attractors. One can identify two
separate “regimes” for the nature, where one is more pronounced than the other. The
model reproduces a similar structure, giving more weight however to the regime that is
less pronounced in the nature. This important, but complicated change in attractor struc-
ture of the model can not be compensated by a translation of the set of observations as
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AI intends. As a consequence, the result after initialisation with AI is less consistent with
the model attractor. The bottom panel of Fig.4.7 displays the one “month” predictions,
showing how the weaker regime is “over-predicted” after Anomaly Initialisation.
Results show that Anomaly Initialisation has been designedto remedy drift by translating
the set of observations closer to the attractor. The precondition for this approach to be
successful, however, is that the difference in the model and nature PDFs is mainly of the
first order. This might be the explanation for why AI performspoorer than FFI for the
{c, cz}-spectrum of models, in which their PDFs differ in higher orders than only the first
order, i.e. the bias.

4.1.6 Approximation of the model PDF

The objective of Anomaly Initialisation is to better approximate the model attractor. This
is intended by adding the bias to the observations distribution to obtain a better represen-
tation of the model distribution. Figure4.8(a)illustrates the probability density functions
(PDFs) for each variable for the nature (blue), and for our example model (red), which
is chosen here again to be{c, cz} = {0.8, 0.9}. Additionally, the distribution of the differ-
ences between model and nature PDFs is given (green), as wellas the nature distribution
“corrected” by means of an addition of the bias of the variable (black), from which the ini-
tial conditions for Anomaly Initialisation are sampled. Comparing the nature and model
distributions, we observe that in the “extratropical atmosphere” they are almost identical,
which is expected due to the equal, weak “extratropical” coupling in the model as in the
nature. In the “tropical atmosphere”, the nature PDF is given by a bimodal distribution in
the xt- andyt-variables, for which one of the modes is more distinguishedthan the other.
The model PDF can be described in terms of a bimodal distribution over the same region
in phase space, but over-representing the mode that is weaker in the nature. Such a mis-
representation of the natural modes due to an erroneous coupling in the model results in
a clear bias. The initial conditions for Anomaly Initialisation are sampled from the distri-
bution given by the addition of this bias onto the nature (black). However, the distribution
gained from adding the bias onto the nature does not approximate the model PDF, as it
is intended to do. Thus, the initial conditions for AI are sampled from a distribution that
much less represents the model PDF than the initial conditions of FFI sampled from the
nature distribution. This is due to the fact that, although adifference in the first order
moments is present, and this difference constitutes the bias, the addition of this bias onto
the nature distribution does not result in an adequate correction, because the higher order
differences are not accounted for. In the “ocean”, the distributions from which FFI and AI
are sampled (blue and black respectively) are almost entirely equal, explaining the similar
performance of AI and FFI in the “ocean” as we have observed for this example model.
Figure4.8(b)depicts the same distributions described in figure4.8(a), but for an example
model with erroneous forcing ofr = 68. We can see that the distributions from which
FFI and AI are sampled (blue and black respectively) are verysimilar for all x- andy-
variables. The key difference can be observed in thez-variables, for which a bias of the
model distribution with respect to the nature distributionis present. The distribution from
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Figure 4.7: Three-dimensional view of the “tropical” attractors of themodel (red) and
nature (blue) for{c, cz} = {0.8, 0.9}. The initial conditions of FFI (green stars) and AI
(black triangles) are shown in the top left and right panels respectively. The one “month”
predictions are shown in the bottom panels after FFI (left) and AI (right). Note that the
perspective has been altered with respect to Fig.4.6for better recognition.



Chapter 4. Results 65

−40 −20 0 20 40
0

0.02

0.04

0.06

x
e

−50 0 50
0

0.05

0.1

y
e

−50 0 50
0

0.02

0.04

0.06

z
e

 

 

Nature
Model
Model − Nature
Nature + BIAS

−40 −20 0 20 40
0

0.1

0.2

x
t

−40 −20 0 20 40
0

0.1

0.2

y
t

−50 0 50 100
0

0.1

0.2

z
t

−100 −50 0 50 100
0

0.05

0.1
X

−200 −100 0 100 200
0

0.02

0.04

0.06
Y

−200 −100 0 100 200
0

0.02

0.04
Z

(a) {c, cz} = {0.8, 0.9}

−50 0 50
0

0.02

0.04

0.06

x
e

−100 −50 0 50 100
0

0.02

0.04

0.06

y
e

−50 0 50 100 150
0

0.02

0.04

0.06

z
e

 

 

Nature
Model
Model − Nature
Nature + BIAS

−50 0 50
0

0.1

0.2

x
t

−50 0 50
0

0.05

0.1

y
t

−50 0 50 100 150
0

0.05

0.1

z
t

−200 −100 0 100 200
0

0.02

0.04

0.06
X

−400 −200 0 200 400
0

0.005

0.01

0.015
Y

−200 0 200 400
0

0.005

0.01

0.015
Z

(b) r = 68

Figure 4.8: PDFs of the nature (blue), model (red), the difference between model and
nature (green), and the distribution associated with the initial conditions for AI (black).
The nine panels correspond to the nine variables as indicated. (a){c, cz} = {0.8, 0.9}, (b)
r = 68.
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Figure 4.9: Distributions of (a) the biases and (b) the differences in second order moments
for {c, cz}-models (blue) andr-models (red). Panels correspond to the nine variables as
indicated.
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Figure 4.10: Difference in (a) third order moments and (b) fourth order moments between
model and nature plotted as a distribution for{c, cz}-models (blue) andr-models (red).
Panels correspond to the nine variables as indicated.
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which the initial conditions for AI are sampled (black) approximates the model PDF (red)
much better than the nature distribution (blue) from which the initial conditions of FFI are
sampled. This is due to the fact that the differences between the model and nature PDFs
are well-approximated in terms of a difference in both first order moments. As opposed
to our previous{{c, cz} = {0.8, 0.9}}-model, for this model the addition of the bias onto
the nature distribution can correct the difference in the first order moments, resulting in
a better approximation of the model PDF. This feature is muchless distinguished in the
“ocean”, explaining why the better performance of AI over FFI for r-models is less pro-
nounced here.
In order to extend the analysis of the PDFs for all models, figure 4.9(a)displays the dis-
tributions of the bias for{c, cz}-models (blue) andr-models (red) for all nine variables.
Figures4.9(b) to 4.10(b)follow in the same fashion, displaying the distributions ofthe
differences between the higher order moments of model and naturePDFs up to the fourth
order. Figure4.9(a)shows how the bias is comprised almost entirely in thez-variables
for r-models, and more broadly distributed over the variables for {c, cz}-models. Figure
4.9(b)shows how the variance of all variables of ther-models is very broadly distributed,
owing to the fact that the variance increases for an increasein forcing. Figures4.10(a)and
4.10(b)show how the differences in skewness and kurtosis are much more broadly dis-
tributed for{c, cz}-models rather thanr-models. These results clearly confirm the findings
of our example models in the previous figures4.8(a)and4.8(b). The differences between
model and nature PDFs for{c, cz}-models occur not only in the first moment of the distri-
butions, but also in the third and fourth moments. Contrarily, for r-models the differences
between model and nature PDFs are generally well-approximated in the first order, ex-
plaining why Anomaly Initialisation is a promising alternative to Full Field Initialisation.
The fact that larger differences occur in the second moment forr-models do not turn out
to be a disadvantage, because the larger variances of the models increase the probability
that the initial conditions after Anomaly Initialisation will project onto the model attractor.

It appears as if Anomaly Initialisation will work better when the projection of its initial
conditions onto the model PDF is successful. Similarity of probability distributions can
be measured in terms of the Bhattacharyya coefficient [Bhattacharyya, 1943]. The Bhat-
tacharyya coefficient is an approximate measurement of the amount of overlapbetween
two statistical samples.

BC(p, q) =
∑

x∈X

√

p(x)q(x) (4.1)

wherep andq are discrete probability distributions over the same domain X. Therefore,
0 ≤ BC ≤ 1, where 1 corresponds to maximum similarity. Note that if the distributions do
not overlap, the BC coefficient does not distinguish between distributions “far” or “very
far” from eachother; both cases result inBC = 0. We want to measure the similarity
between the model PDFs (p(x)) and the “corrected” distributions from which the initial
conditions of AI are sampled (q(x)).
Figure4.11(a)displays the Bhattacharyya coefficient as a function of the bias for{c, cz}-
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(a) Bhattacharyya coefficient as a function of the bias for{c, cz}-models.
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Figure 4.11: Bhattacharyya coefficient measuring the similarity between the model dis-
tribution and the distribution associated with the initialconditions for AI, as a function of
the bias. Each point in a single panel corresponds to one of (a) the 109{c, cz}-models (b)
the 41r-models. Panels correspond to the nine variables as indicated.
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models, where every point in each of the nine panels corresponds to a single model. In
the “extratropical atmosphere”, the coefficient is equal to one for all models, because
both distributions are almost entirely equal due to the equal “extratropical” coupling. The
remaining variables show a dependency of the coefficient on the model bias. The larger
the bias, the less similar the model PDF is compared to the distribution from which the
initial conditions for AI are sampled. This shows that the first order bias correction behind
Anomaly Initialisation does not result in a good approximation of the model PDF as
intended.
Figure4.11(b)shows the same, but forr-models. The Bhattacharyya coefficient is much
less dependent on the bias of the model, clearly pointing towards the fact that the model
PDFs are well-approximated by the “corrected” distributions. This result confirms the
discussion followed in Fig.4.9(a)-4.10(b). Thus, Anomaly Initialisation succeeds for
r-models, because the first order approximation scheme of themodel attractor through
addition of the bias succeeds. This success is due to the factthat the model attractors
vary from the nature attractor in terms of the first order, andhigher order differences are
negligible.

4.1.7 Summary of research line 1

With regards to our first research line, we have found that forthe initialisation of single
compartments, the best performance for long time horizons is obtained when the stabler
component of the model, i.e. the “ocean”, is initialised. Having the slowest error growth
rate, the “ocean” behaves like the system’s memory. We have also found that FFI depends
sensitively on the observational error, whereas AI is not significantly improved when the
observational error is reduced. This is not surprising, because the initial conditions error
of FFI is reduced for smaller observational errors, but under the addition of the model bias
as in AI, the initial error scales less with regards to the observational error (Sect.3.3.2).
The results investigating the role of the model on the initialisation suggest the follow-
ing interpretation. AI outperforms FFI forr-models, because a significant model bias is
present, and other relevant differences between model and nature PDFs are limited to the
second moments. For FFI, the model bias incurs initialisation outside of the model attrac-
tor, to which the model’s short-term response is a climate extreme, and resulting oscilla-
tions. This is a picture book example of shock-induced forecast errors, and is supported
by experiments in which the “perfect model” is perturbed by introducing an artificial bias
onto the observations, indicating a direct relationship between drift and perturbation mag-
nitude (not shown).
On the other hand, FFI outperforms AI for{c, cz}-models, because such models define a
spectrum of attractors that differ significantly from nature in their third and fourth mo-
ments. Although these models have equally significant biases, the biases do not alone
account for the differences between model and nature PDFs.
These results are entirely in line with the principle behindAI, and what one would ex-
pect of its performance. The results suggest that a comparison of model and nature PDFs
can inform the choice between AI and FFI. AI will be the initialisation scheme of choice
for models with significant biases that are not accompanied by equally significant higher
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order differences in PDFs. AI intends to control and eliminate forecast errors occurring
from a “translation” of the model attractor with respect to the nature attractor in phase
space.
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4.2 Research line 2: Advanced schemes

4.2.1 Least Squares Initialisation (LSI)

In the following section we will compare the performance of FF-LSI against the standard
FFI approach for the same example configuration of{c = 0.8, cz = 0.9}. The standard
deviation of the observational error is equal toσo = 1.5%, and the error covarianceR
is diagonal and contains the correct observational error variance. The background error
covariance matrixBm is estimated over 50 years of an uninitialised model run.
Figure4.12shows the RMSSS of FF-LSI for different observational scenarios (full coloured
lines) as a function of the background error scaling coefficient 10−5 ≥ α ≤ 15. The six
panels correspond to the different forecast time horizons as indicated, and the dashed
lines correspond to the standard FFI performance. We observe that for smallα, the fore-
cast skills of all scenarios converge to zero. A smallα suggests a small background error
covarianceBm, implying a high accuracy of the background information. This leads to
an over-emphasizing of the background, and a neglect of the observational infomation,
resulting in essentially uninitialised predictions. For largeα, we observe an improvement
in forecast skill of FF-LSI over standard FFI for partly initialised systems. In this case,
the observational information is fully taken advantage of where available, because a large
background error variance assimilates the observations asif they were perfect. The obser-
vational content limited to the observational subspace is propagated to the entire model
domain according to the spatial correlations embedded in the off-diagonal elements of
Bm, thus exceeding the standard FFI skill level. This behaviour is underlined when view-
ing the full system (black line); the forecast skill of FF-LSI converges towards that of
standard FFI. When the full system is being observed and all observations are utilized, no
additional information can be obtained through the background error structure. Note also
that the skill improvement for the “extratropical atmosphere” is only marginal, due to its
weak coupling with the “ENSO” system inducing small covariances.
In order to compare the similarity of the real background error covarianceB and its ap-
proximationBm, figure4.13displays the percentage of the explained variance of each of
the eigenvectors ofB (full line) and Bm (dotted line) in the upper panel, as well as the
scalar product of each pairvi(B) × vi(Bm) in the lower panel, withvi(B) being theith
eigenvector ofB, i = 1, ..., 9 and× indicating the scalar product. The explained variance
is given byVarexp(vi) = λi/(Σiλi) × 100[%], withλi being theith eigenvalue. We see that
the variance distribution is accurately reproduced and that, with exception of the third and
fourth that are perpendicular to each other, all remaining eigenvectors are fully aligned.

4.2.2 Exploring the Parameter Uncertainty (EPU)

In the following section we will study the performance of EPU, a drift correction tech-
nique introduced in Sect.3.4.2. EPU is implemented during the forecast run after initiali-
sation with FFI, and will be referred to as FFI-EPU. We compare it’s performance against
standard FFI without a correction procedure.
Figure4.14displays the distribution of the RMSE of all 109{c, cz}-models after Full Field
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Figure 4.12: RMSSS as a function of the tuning coefficientα for LSI. The panels refer to
six different averaging periods as indicated. The colors representinitialization of the full
system (black), the “ocean” alone (green), the “tropical atmosphere” alone (pink), and the
“extratropical atmosphere” alone (blue). The values of thestandard FFI are displayed for
reference (dots).

Initialisation with (red lines) and without (black lines) the implementation of EPU. The
specifications for EPU include the parameter range∆Λ given by the 109 model configu-
rations, as well as the correction time interval∆TBias equal to one time step. The panels
correspond to the same six forecast horizons as earlier. Additionally, the means of both
distributions are given in the insets. Results reveal the benefit of implementing EPU up
to the third forecast year, with minor improvement for longer horizons. This is evident in
the shift of the distributions related to FFI-EPU towards smaller RMSE values, as well as
a reduction of the mean error by 17%, 10%, 8%, 4%, 0.6% and 0.2% for the six forecast
horizons respectively. Significant skill is limited to the seasonal forecast, which is due to
sampling errors, as well as the progressive deviation of thedrift behaviour from the linear
assumption, on which EPU is based. Note, however, that the use of EPU in conjunction
with FFI has implied only a minor increase in computational cost.
In figure4.15we investigate the impact of the uncertainty about the widthof the sampling
interval for parametric error∆Λ, as well as the correction time interval∆TBias, on the per-
formance of EPU. Both of these factors control the setup of the drift correction technique.
In the left panel, the RMSE of FFI-EPU (full lines) is displayed as a function of the scaling
coefficientβ, which scales the width of the sampling interval, i.e.δλi ∈ U(0, β(λ − λnat),
simulating the level of uncertainty about the possible parameter range. The RMSE is
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Figure 4.13: Top panel: explained variance over each eigenvector ofBm used in LSI
(dotted line) and the actual backround error covariance matrix B (solid line). Bottom:
scalar product between pairs of eigenvectors ofBm andB.

calculated over the first year of prediction, and the skill ofstandard FFI is given in the
dashed lines. Both example configurations corresponding to{c = 0.8, cz = 0.9} (black)
and {c = 0.3, cz = 1.2} (red) are considered. Results show that best performances are
found forβ ≈ 2, which is expected because the mean of the distribution coincides with
the actual parametric error. More importantly, we observe an improvement of FFI-EPU
over standard FFI (dashed line) for the entire range given byβ = (0, 3.5) and both model
configurations.
In the right panel of figure4.15, we investigate the dependence of the RMSE of FFI-EPU
on the length of the short time interval over which the bias iscorrected. The same re-
lations apply for the right panel as for the left panel, but weset the scaling parameter
β ≈ 2 in order to focus on the impact of∆TBias alone. As anticipated, a shorter time in-
terval improves the performance of EPU for both configurations, because the linear error
hypothesis is no longer valid for large lead times. We can see, however, that the improve-
ment in skill over standard FFI applies for time intervals upto about 30 time steps for the
first configuration (red) and up to as much as 40 time steps, corresponding to two months,
for the second configuration (black). These time intervals can be interpreted as a measure
of the duration of the linear regime, and are consistent withthe largest (in absolute value)
Lyapunov exponent of both configurations,|γc=0.8,cz=0.9

9 | < |γ
c=0.3,cz=1.2
9 | in accordance with

the theory of deterministic model dynamics [Nicolis, 2003]. For longer time intervals the
correction procedure deteriorates skill.
Overall, the results of this section show the robustness of EPU for simple dynamics, and
in situations in which large uncertainties with respect to the parameter range are present.
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Figure 4.14: Distribution of the RMSE for FFI (black line) and FF-EPU (redline). The
six panels refer to six different averaging periods and are indicated in the corresponding
labels. Mean values of the distributions are given in the insets.

4.2.3 Summary of research line 2

FF-LSI shows a clear skill improvement over standard FFI forpartially initialised sys-
tems. The skill improvement is larger than 5% for initialisation of the “tropical atmo-
sphere” on forecast horizons of up to six “months”, and for the “ocean” up to one “year”,
with marginal skill on longer horizons. Initialisation of the “extratropical atmosphere”
shows no significant improvement, due to its weak coupling. We have also shown that
our approximation of the real background error covariance is robust.
The implementation of EPU in conjunction with FFI reveals a reduction of the mean error
by 10% up to the first forecast “year”, 5% up to the third, and a minor improvement for
longer horizons. Signifant skill is thus limited to seasonal time horizons, due to sampling
errors, as well as a deviation of the drift behaviour from thelinear assumption. We have
shown that skill improvement is sensitive to the specification of the uncertainty range, as
well as the time correction interval, but seems to be robust with respect to both.
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5 Conclusion

In this study we have investigated the relative performanceof Full Field and Anomaly
Initialisation of climate predictions on seasonal-to-decadal time horizons under varying
conditions of observational and model error. FFI assimilates observations directly into
the model, whereas AI assimilates the observed anomalies onto an estimate of the mean
model climate [Magnussonet al., 2012].
We have also investigated the skill of two advanced schemes implemented in conjunc-
tion with FFI. Least-Squares-Initialisation [Carrassiet al., 2014] borrows central concepts
from data assimilation and has the aim of improving the initial conditions based on a least
squares approach in which the observational and model statistics are taken into account.
LSI approximates the background error covariances using the model anomalies, and is
similar to the approach ofSmith and Murphy[2007] in which the ocean is initialised. We
investigate how LSI can improve forecast skill through the propagation of information
across separate model compartments.
Exploring the Parameters Uncertainty [Carrassiet al., 2014] is a short time drift correc-
tion technique applied during the forecast run. It exploitsthe fact that the evolution of the
bias due to parametric model error is fully correlated in time, albeit difficult to correctly
compute. EPU estimates the model bias by making a first order approximation in time.
The Jacobian of the forecast model must be computed at the required time during the
forecast run, and the parametric error is sampled from a specified uncertainty range.
Our study has been carried out using a low order climate model[Peña and Kalnay, 2004],
necessating little computational time and effort and allowing for robust inferences. Fol-
lowing the line of an OSSE [Bengtssonet al., 1981] test bed, a “true” trajectory, which we
call the nature, is simulated, from which the observations are sampled within a Gaussian
white error. The true trajectory is targeted using imperfect models based on parametric
error, initialised under the implementation of the above schemes incorporating the sam-
pled observations. A central assumption on which our investigation is based is that the
phase space spanned by the model and the nature is the same, neglecting the problem of
unresolved scales.
We first discuss the results related to the first main researchline spanning the comparison
of FFI and AI under different observational error and model error scenarios. First-of-all,
we have found that for the initialisation of single compartments, the best performance for
long time horizons is obtained when the stabler component ofthe model, i.e. the “ocean”,
is initialised. Having the slowest error growth rate, the “ocean” behaves like the system’s
memory. Secondly, we have found that FFI depends sensitively on the observational error,
whereas AI is not significantly improved when the observational error is reduced. This
result is in line with regards to the error scaling properties of both schemes, which can
be estimated using the unified formalism introduced byCarrassiet al. [2014]. The initial
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conditions error of FFI is reduced for smaller observational errors, but under the addition
of the model bias as in AI, the initial error scales less with regards to the observational
error.
Thirdly, we have assessed the perfomance of either schemes for different scenarios of
model bias. Both schemes are identical when no model bias is present, i.e. in the face
of a perfect model. Anomaly Initialisation intends to avoidmodel drift occurring in the
presence of a model bias, which can be detrimental to forecast skill [Magnussonet al.,
2012]. We have identified two scenarios in which either scheme outperforms the other.
For models specified by erroneous “tropical” coupling parameters that we have termed
{c, cz}-models, the forecast skill of AI decreases for larger modelbiases while that of FFI
is independent of the bias. This scenario suggests that AI isimproved only after model
enhancements. For models specified by an erroneous forcing parameterr that we have
termedr-models, the reverse is true, i.e. AI outperforms FFI. We have identified the
reasons behind these various results by comparing the statistics of the model and nature
PDFs. AI outperforms FFI forr-models, because a significant model bias is present, and
other relevant differences between model and nature PDFs are limited to the second mo-
ments. For FFI, the model bias incurs initialisation outside of the model attractor, to which
the model’s short-term response is a climate extreme, and resulting oscillations. Our 3D
visualisation of this occurrence is a picture book example of shock-induced forecast er-
rors, and is supported by experiments in which the “perfect model” is perturbed by in-
troducing an artificial bias onto the observations, indicating a direct relationship between
drift and perturbation magnitude (not shown). Initialisation with AI avoids the occurrence
of a shock, because in the case ofr-models, the model PDF is well approximated after a
subtraction of the model bias. On the other hand, FFI outperforms AI for {c, cz}-models,
because such models define a spectrum of attractors that differ significantly from that of
the nature in their third and fourth moments. Although thesemodels have equally signifi-
cant biases, the biases do not alone account for the differences between model and nature
PDFs. Thus, implementation of AI can result in initial conditions less consistent with the
model PDF.
These results are entirely in line with the principle behindAI, and what one would expect
of its performance. AI intends to initialise predictions closer to the model attractor [Mag-
nussonet al., 2012] by effectively adding the model bias onto the observations. This is
merely a first order correction applied to the observations with the intention of approxi-
mating the model PDF, which is not guaranteed. The results suggest that a comparison
of model and nature PDFs can inform the choice between AI and FFI. AI will be the ini-
tialisation scheme of choice for models with significant biases that are not accompanied
by equally significant higher order differences in PDFs. One can say that AI intends to
control and eliminate forecast errors occurring from a “translation” of the model attractor
with respect to the nature attractor in phase space.
The results associated with the second main line investigating the performance of ad-
vanced schemes are as follows. LS-FFI shows a clear skill improvement over standard
FFI for partially initialised systems. The skill improvement is larger than 5% for the
“tropical atmosphere” on forecast horizons of up to six “months”, and for the “ocean”
up to one “year”, with marginal skill on longer horizons. The“extratropical atmosphere”



Chapter 5. Conclusion 79

shows no significant improvement, due to its weak coupling. We have further shown that
our approximation of the real background error covariance is robust. This result con-
tributes towards the discussion on adequate coupled DA schemes, making a case for the
approximation of the forecast error covariances based on the model anomalies.
Finally, the implementation of EPU in conjunction with FFI reveals a reduction of the
mean error by 10% up to the first forecast “year”, 5% up to the third, and a minor im-
provement for longer horizons. Signifant skill is thus limited to seasonal time horizons,
due to sampling errors, as well as a deviation of the drift behaviour from the linear as-
sumption. We have shown that skill improvement is sensitiveto the specification of the
uncertainty range, as well as the time correction interval,but seems to be robust with re-
spect to both.
Future workwill require a validation of the above results from both research lines us-
ing models of higher complexity. The development of an alternative scheme to Anomaly
Initialisation on the basis of an approximation of the modelattractor beyond a first or-
der correction of the bias is desirable. Investigations in this direction have not yet been
undertaken by the author.
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