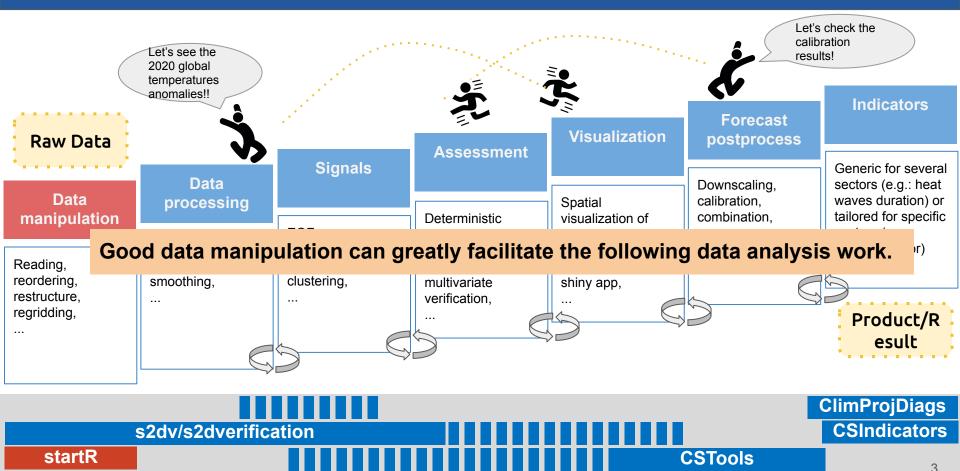


Barcelona Supercomputing Center Centro Nacional de Supercomputación

startR: A tool for large multi-dimensional data processing

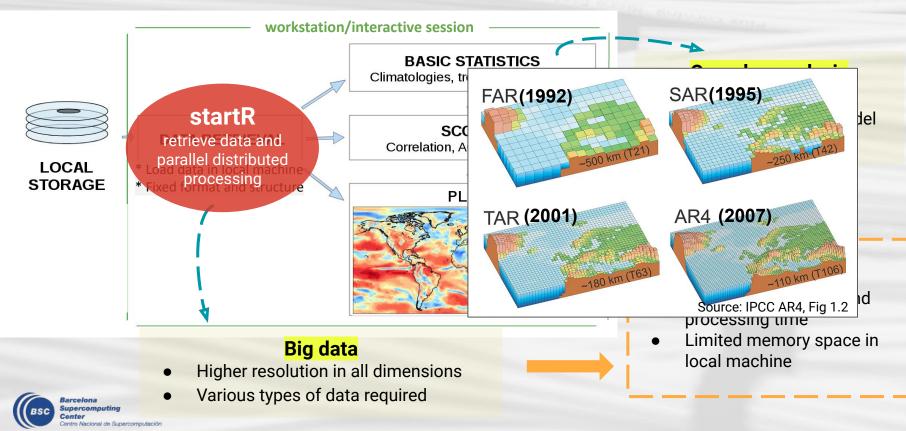
8th BSC Doctoral Symposium (2021) Núria Pérez-Zanón*, <u>An-Chi Ho*</u>, Nicolau Manubens*, Francesco Benincasa*, Pierre-Antoine Bretonnière*

*Earth Science Department, Barcelona Supercomputing Center, Barcelona, Spain


Outline

- 1. startR's background and purpose
- 2. Functions and workflow
- 3. Use case
- 4. Summary and resources

Research process and R tools in Earth Science field

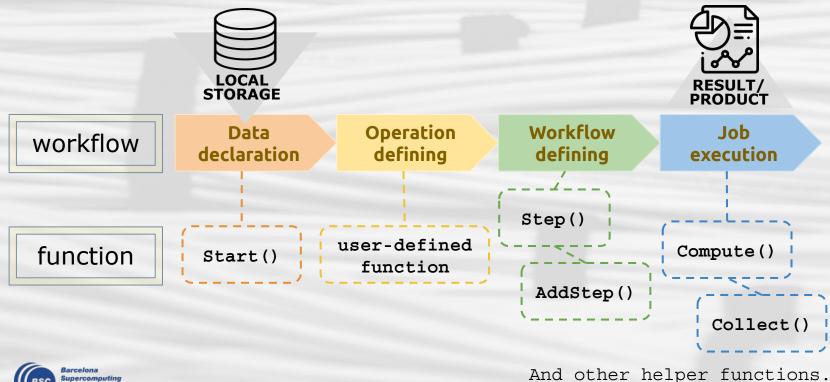

easyNCDF

multiApply

How was startR born?

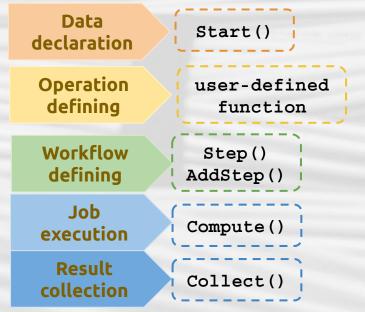
[Data analysis procedure]

startR features


- ★ An R package tailored for big multi-dimensional data retrieval and processing
- ★ Apply multiApply paradigm, which provides flexibility in multi-dimensional data processing
- ★ Implement the MapReduce paradigm (i.e., chunking) on HPCs for parallel distributed data-processing
- ★ Pre-processing: data transformation or reordering/reshaping/renaming dimensions before performing analysis
- \star Well-preserved metadata during the whole process
- ★ Use ecFlow workflow manager for job distribution and monitoring on HPCs
- ★ Acceptable data format: netCDF for now, but may be available for other formats.

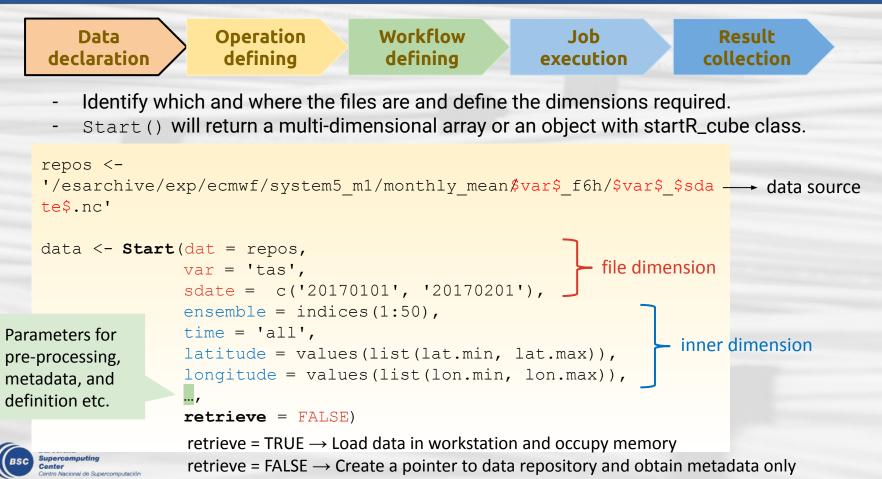
startR functions and workflow

Nacional de Supercomoutación


With startR, users can create a concise script for data analysis with all the information needed.

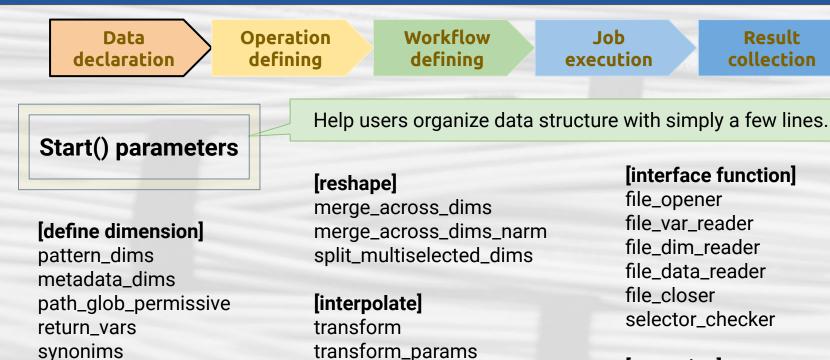
6

startR functions and workflow


With startR, users can create a concise script for data analysis with all the information needed.

- 1. Declare the data sources and the required file/inner dimensions.
- 2. Define the operations to be applied.
- 3. Combine the elements from the previous steps to build up the workflow.
- 4. Set the configuration for the chosen machine and trigger job execution.
- 5. Collect the results when the execution is finished.

1. Data declaration


1. Data declaration

*_depends

*_across

Barcelona Supercomputing

* var

transform_vars

transform_extra_cells apply_indices_after_transform

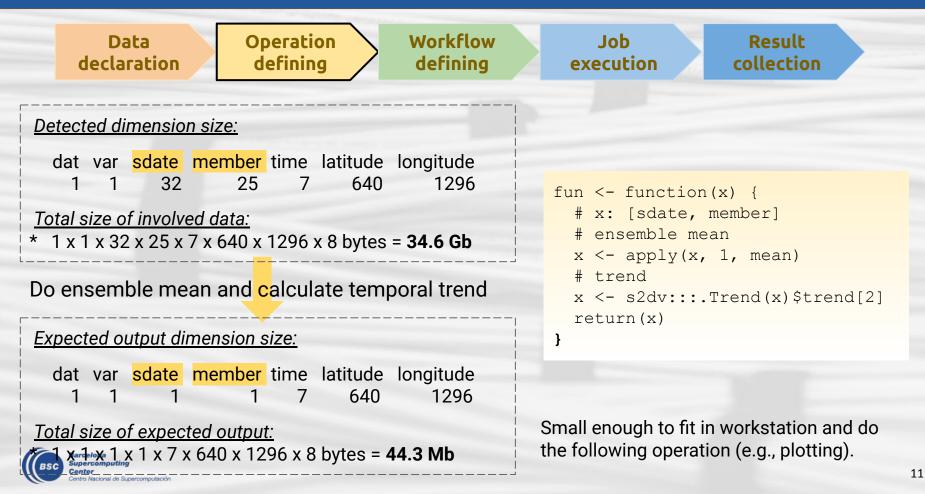
[operation] num_procs silent debug

2. Operation defining

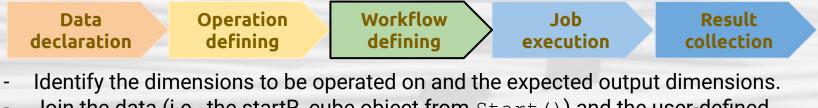
- Define the operation in the **R function format**.
- The operation is only for **essential dimensions** but not the whole data, which is the concept of multiApply.
- The output size should be small enough to fit in the workstation.

E.g., Start() call detected the data size:

Detected dimension size:

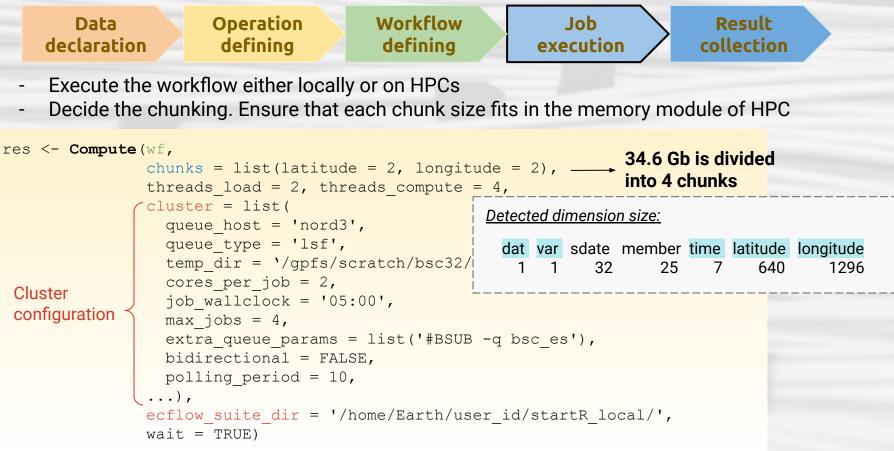

dat var sdate member time latitude longitude 1 1 32 25 7 640 1296

<u>Total size of involved data:</u> * 1 x 1 x 32 x 25 x 7 x 640 x 1296 x 8 bytes = **34.6 Gb**


Too large to fit in workstation. The operation has to reduce the size.

2. Operation defining

3. Workflow defining


 Join the data (i.e., the startR_cube object from Start()) and the user-defined function together.

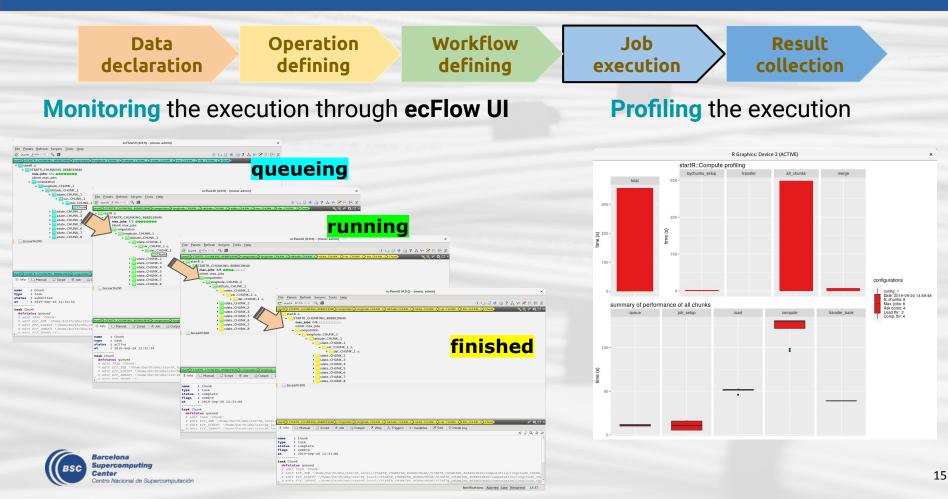
Which dimensions the operation performs on? Which dimensions of output are expected?

(Check the function in the previous step)

```
fun <- function(x) {
    # x: [sdate, member]
    # ensemble mean
    x <- apply(x, 1, mean)
    # trend
    x <- s2dv:::.Trend(x)$trend[2]
    return(x)</pre>
```

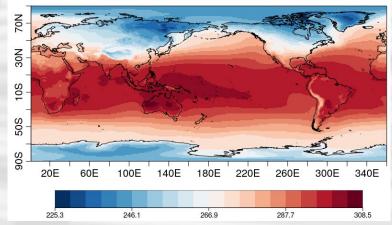
4. Job execution

5. Result collection


- The results of each chunk combine and return automatically if we wait for the execution finished.
- For the long computation we don't wait, Collect() is used to combine and return the results back to the workstation.

```
saveRDS(res, file = './res_collect.Rds') ----> Store the descriptor of the execution
**Now you can close the R console and come back later**
```

```
collect_info <- readRDS('./res_collect.Rds')
result <- Collect(collect info, wait = TRUE)</pre>
```



Monitor and profile the execution

Data:

- tas/monthly_mean/January 1981 2010
- experiment: ECMWF/system5_m1
- observation: ECMWF/Era-interim
- Pre-processing
 - Reshape the dimensions
 - Regrid to 1° resolution
 - Reorder latitudes
- Operations:
 - Bias adjustment. Use CSTools::..cal (the interior function of CST_Calibration)
 - Ensemble mean

tas ensemble climatology after calibration (Jan 1981-2010)

360

512

: 1 256

1. Data declaration

Original data structure of netCDF file:

Data structure after pre-processing by Start():

<u>ex</u>	<u>(p</u>		<u>obs</u>	
*	dat: var:	1	* *	dat: var:
*	sdate: ensemble:	25		sdate:
*	time: latitude:		*	time: <mark>lat</mark> :
*	longitude:	1296	*	lon:

<u>ex</u>	<u>(p</u>		<u>obs</u>		
*	dat:	1	*	dat:	1
*	var:	1	*	var:	1
*	smonth:	12	*	smonth:	12
*	syear:	30	*	syear:	30
*	ensemble:	25			
*	time:	1	*	time:	
*	latitude:	181	*	latitude:	181
*	longitude:	360	* (ongitude:	360

Consistent!

Experimental data

```
# Declaration of data sources
exp <- Start(dat = '/esarchive/exp/ecmwf/system4 m1/monthly mean/$var$ f6h/$var$ $sdate$.nc',</pre>
             var = 'tas',
             sdate = sdates,
                                                                                                           reshape
             split multiselected dims = TRUE,
             ensemble = 'all',
             time = indices(1),
             latitude = values(list(lats.min, lats.max)),
                                                                                                           reorder
             latitude reorder = Sort(),
             longitude = values(list(lons.min, lons.max)),
             longitude reorder = CircularSort(0, 360),
             transform = CDORemapper,
             transform extra cells = 2,
                                                                                                            regrid
             transform params = list(grid = 'r360x181',
                                     method = 'conservative',
                                     crop = c(lons.min, lons.max, lats.min, lats.max)),
             transform vars = c('latitude', 'longitude'),
             return vars = list(latitude = 'dat',
                                                                                                          metadata
                                longitude = 'dat',
                                time = c('sdate')),
             retrieve = FALSE)
```


1. Data

declaration

Observational data Make the array structure consistent with experimental one.

1. Data declaration

```
obs <- Start(dat = '/esarchive/recon/ecmwf/erainterim/monthly mean/$var$ f6h/$var$ $sdate$.nc',
             var = 'tas',
             sdate = sdates obs.
                                                                                                          reshape
             split multiselected dims = TRUE,
             time = indices(1),
             latitude = values(list(lats.min, lats.max)),
                                                                                                          reorder
             latitude reorder = Sort(),
             longitude = values(list(lons.min, lons.max)),
             longitude reorder = CircularSort(0, 360),
             transform = CDORemapper,
             transform extra cells = 2,
                                                                                                           regrid
             transform params = list(grid = 'r360x181',
                                    method = 'conservative',
                                    crop = c(lons.min, lons.max, lats.min, lats.max)),
             transform vars = c('latitude', 'longitude'),
             synonims = list(latitude = c('latitude', 'lat'),
                                                                                                          rename
                            longitude = c('longitude', 'lon')),
             return vars = list(latitude = 'dat',
                                longitude = 'dat',
                                                                                                         metadata
                                time = c('sdate')),
             retrieve = FALSE)
```


	Define the workflow	2. Opera definir	
	<pre>Function ap_cal <- function(obs, exp) { calibrated <- CSTools:::.cal(exp = exp, obs = obs,</pre>	tion format ibration	
	<pre>#ensemble mean ens_mean <- apply(calibrated, 2, mean, na.rm = TRUE) #climatology clim <- mean(ens_mean, na.rm = TRUE)</pre>	nble mean natology	
	<pre>return(clim) Workflow ep <- Step(wrap_cal,</pre>	3. Workf definir	
wf	<- AddStep(list(obs = obs, exp = exp), step)		

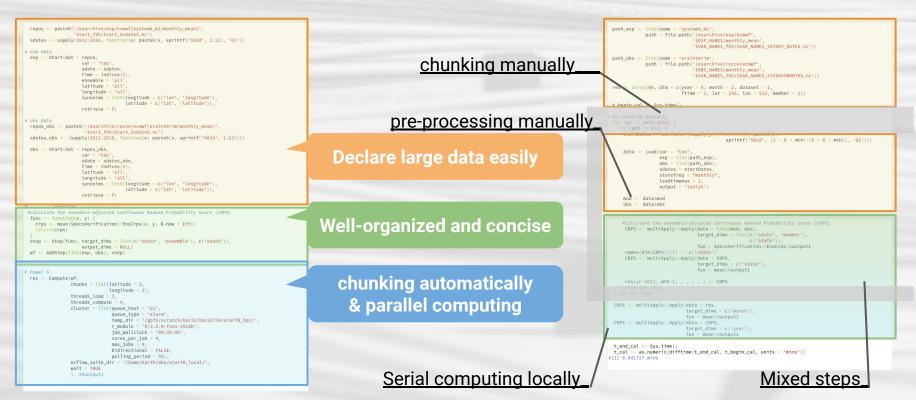
Total size of involved data:

<u>exp</u>: 1 x 1 x 360 x 25 x 1 x 640 x 1296 x 8 bytes = **55.6 Gb** <u>obs</u>: 1 x 1 x 360 x 1 x 256 x 512 x 8 bytes = **360 Mb** Estimated size of output data: 1 x 1 x 12 x 30 x 25 x 1 x 181 x 360 x 8 bytes = 6.25 Mb

Compute on Nord3 cluster

Nacional de Supercomputación

```
-----user-defined-
queue host <- 'nord1'
temp dir <- '/gpfs/scratch/bsc32/bsc32734/startR hpc/'</pre>
ecflow suite dir <- '/home/Earth/aho/startR local/'
res <- Compute(wf,
               chunks = list(smonth =12),
                                                                                        Chunking
               threads load = 2,
               threads compute = 4,
               cluster = list(queue host = queue host,
                                                                                          Nord3
                queue type = 'lsf',
                temp dir = temp dir,
                                                                                      configuration
                cores per job = 2,
                job wallclock = '05:00',
                max jobs = 4,
                extra queue params = list('#BSUB -q bsc es'),
                bidirectional = FALSE,
                polling period = 10
               ecflow suite dir = ecflow suite dir,
               wait = TRUE
               ) #$output1
```



21

Workflow comparison

startR workflow

without startR workflow

Summary and future work

startR's advantages:

- Proficient in big and complex multi-dimensional data retrieval and processing
- Highly adaptable to data structure and users' needs
- Clear and concise workflow, easy to be reused and adapted to other analyses
- Automatically chunking and dispatching jobs in parallel on HPCs
- Compatible with other R tools developed in the department, forming a strong toolset for climate research
- With the plug-in of interface functions, startR can be exploited in different scientific domains where large multi-dimensional data is involved

startR's disadvantages:

We provide resources and support!

- Long learning curve
- Not-so-intuitive coding style (functional paradigm)

Summary and future work

Applications:

- S2S4E project link
- ESMValTool, C3S MAGIC project link
- Individual research

Future work:

- Increase the flexibility of the retrieval of different datasets
- Multiple steps in the workflow
- Retrieve data from the cloud

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Relative speech

Tomorrow 10:20h <u>Climate Forecast Analysis Tools</u> <u>Framework</u> by Núria Pérez-Zanón

Resources on GitLab

- Documentation
 <u>README.md</u>, pracitcal_guide.md, faq.md... etc.
- Example scripts: <u>usecase.md</u>

Resources on CRAN

• Find the manual and installation here

Contact

- Núria Pérez-Zanón (nuria.perez@bsc.es)
- An-Chi Ho (an.ho@bsc.es)

Thank you and let's startR!