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Abstract

Weather regimes are large-scale circulation states that occur frequently in the climate system with
persistence and recurrence. Their importance is due to the fact that they are related to the occurrence of
extreme events, conditions on a synoptic scale and linked with the local weather and climate. Research
in climate prediction has been fostered by the need of improved information about regional climate
for many societal applications at long time scales. Knowledge of the future conditions of the climate
system is essential for decision making in several areas, such as infrastructure planning, water resource
management and climate change adaptation strategies. The objective of this study is to analyse the
impact that the initialization of the models has on the predictability of the four weather regimes that
occur in the Euro-Atlantic region, i.e., NAO+, NAO-, Blocking and Atlantic Ridge. Because of the
complexity of the climate system it is difficult to predict its evolution, but sources of predictability are
sought that may increase the skill of the model. With the initialization of the models, the aim is to
phase the simulations and, therefore, to predict the actual evolution of the system. Among the results,
significant improvements have been found in the skill of the model predicting the frequency of Blocking
primarily during the summer season for the second forecast year. To try to understand the reason
for this improvement, the possible teleconnections with the sea surface temperature are assessed and
a relationship of the frequency of these two regimes with the ocean surface temperatures in the North
Atlantic has been found, which may have increased the skill of the model.
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1 Introduction
1.1 Decadal climate prediction
The objective of decadal climate prediction is to
predict the evolution of the climate system due
to external forcings (natural and anthropogenic)
and internal climate variability on time scales from
1 to 10-30 years. Those external forcings and
the slow oscillations of the climate system pro-
vide predictability at the inter-annual and decadal
timescales, filling the gap between the seasonal fore-
casting and the climate projections. The aim of
these predictions is not to simulate the actual day-
to-day evolution, but instead the evolution of an-
nual or decadal averages or frequency of extreme
events on a synoptic scale.

The external forcings refer to forcing from out-
side the natural climate system, such as anthro-
pogenic forcings (including aerosols, greenhouse
gases and land use changes), changes in solar irra-
diance and large volcanic eruptions. These factors
give rise to externally forced variations and can be
both of natural and anthropogenic origin. In addi-
tion, these forcings are associated with other phe-
nomena. For example, changes in solar irradiance
have been associated with the North Atlantic Oscil-
lation (NAO) by Ineson et al. (2011) and the mod-
ulation of Atlantic landfalling hurricanes by Hodges
et al. (2014). Furthermore, although skill increases
when volcanic eruptions are included in models, it
is not possible to predict them, so the response of
the system can only be calculated once the eruption
has happened (González-Reviriego et al., 2018).

The slow oscillations of the climate system,
known as internal variability, also provide sources
of predictability, since there are some oscillations
operating at inter-annual to decadal timescales.
The dominant mode in the Euro-Atlantic region
is the Atlantic Multi-decadal Variability (AMV),
also known as the Atlantic Multi-decadal Oscil-
lation (AMO), which is a climate cycle (quasi-
periodicity of about 70 years) of the Sea Sur-
face Temperature (SST) throughout the North At-
lantic Ocean and is related to variability in the
thermohaline circulation (Christensen et al., 2013).
Some studies have related the AMV to the Atlantic
Meridional Overturning Circulation (AMOC): the
zonally-integrated component of surface and deep
currents in the Atlantic Ocean (Knight et al., 2005;
Pohlmann et al., 2013). Other studies such as
Booth et al. (2012) explain that AMV is almost
all externally forced.

Different components of the climate system can
provide skill for decadal prediction. Typically,
these components are the ocean, land surface and
sea ice. Additionally, the skill can be improved by
taking into account other components like the veg-
etation and the carbon cycle. It is important to

note that the ocean is the component that gives
more skill in inter-annual to decadal scales due to
its higher thermal inertia, as can be seen in Figure
1a. By contrast, other components like the atmo-
sphere and the land surface lose their memory long
before and, therefore, their potential use as a source
of predictability.

Figure 1b shows the time scales of weather, sea-
sonal, inter-annual to decadal predictions and cli-
mate projections. It is also shown how initial and
boundary conditions influence their skill. Weather
and seasonal predictions are considered as initial
value problems, while the climate projections are
a boundary value problem. In between, inter-
annual to decadal predictions combine both the ini-
tial value and the boundary condition problems.
Thus, both the initial state and the forcings con-
tribute to the forecast, although not always with
the same importance: initial conditions are more
important during the first few years and they be-
come less relevant than the boundary conditions
during the next years when the forcing becomes the
dominant source of predictability (Kirtman et al.,
2013).

1.2 Hindcasting and model initial-
ization

Hindcasting consists in running models for a his-
torical period in order to assess the quality of the
model predicting the past climate evolution. For
this, results of the model are compared with ob-
served or reanalysis data. If results are coherent
and resemble reality, the model would be consid-
ered skillful and it can be used for forecasting.

Hindcasting can be done by initializing the
model towards an observed state or not. Initialized
runs (Init), known as decadal predictions, compute
the evolution of the climate system by integrating
a model forward in time from a set of observation-
based initial conditions. As time increases, they
converge towards the evolution of Non-initialized
runs (No-Init), known as historical simulations,
which are only forced by changes in the external
forcing described above.

The chaotic nature of the climate system limits
the skill of models in predicting its evolution. Pre-
dictability can be analysed by computing the sys-
tem evolution with small differences in both initial
conditions and forcings, that is known as ensem-
ble modelling. While the ensemble mean provides
a more reliable value than a single member, the en-
semble spread provides information about the in-
ternal variability in both the Init and the No-Init
runs (Kirtman et al., 2013). In addition, the Init
runs show the degree of similarity of the different
members of the ensemble.

Ensemble generation for decadal prediction is in-
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(a) (b)

Figure 1. (a) Predictability according to time scale of different components of the climate system (Mariotti et
al., 2018). (b) Time scales of weather, seasonal, inter-annual and decadal predictions and climate

projections and the impact of the initial values and boundary conditions on them (Kirtman et al., 2013).

vestigated for several methods, for example, adding
random perturbations to initial conditions, dis-
placing atmospheric states in time and perturb-
ing ocean initial conditions. In addition, there are
other techniques used in weather and seasonal fore-
casting (Kirtman et al., 2013). Likewise, Meehl et
al. (2013) have studied different initialization tech-
niques, like including partial or fully coupled assim-
ilation of ocean and/or atmospheric observations,
forcing the ocean with atmospheric observations,
and full-field versus anomaly initialization.

These two last techniques are the most used for
seasonal-to-decadal climate predictions. In the full-
field initialization, the best estimate of the real
state is used to initialize the model. Although the
initial error is small, the model quickly drifts to-
wards its own climate state. To partially solve this
problem, anomaly initialization is used. In this
case, observed anomalies are added to an estimate
of the model climate (Carrassi et al., 2014).

There are many studies that analyse the impact
of the initialization of models. For example, the
study carried out by García-Serrano et al. (2015)
showed that uncertainty in the estimation of the
level of AMV skill can be reduced by initializing cli-
mate models. Another study carried out by Doblas-
Reyes et al. (2013) found that the initialization
of forecast systems improves the quality of global-
mean near-surface air temperature and tempera-
ture predictions over the North Atlantic region.

1.3 European weather regimes
The Fifth Assessment Report (AR5) of the
United Nations Intergovernmental Panel on Cli-
mate Change (IPCC) defines weather regimes, also
known as weather types, as a set of similar states
of the climate system that occur more frequently
than nearby states due to either more persistence
or more recurrence (Christensen et al., 2013). They

are quasi-stationary states that provide a simplified
description of the variability in the climate system.
The analysis of weather regimes can be carried out
by analysing different meteorological variables such
as sea level pressure (used in this study) or geopo-
tential height at higher tropospheric levels, e.g., at
500 hPa.

The reason for using weather regimes is that
they reduce the dimensionality of the weather sit-
uation and describe large-scale conditions typically
associated with locally distinct weather status. As
weather regimes describe large-scale conditions ag-
gregated over a continental-scale region, they may
be easier to predict than local weather conditions
and, therefore, be a source of predictability in inter-
annual to decadal prediction.

In the Euro-Atlantic region, the optimal sea-
son weather classification identifies four weather
regimes, with a typical persistence of 3-7 days
(Cortesi et al., 2019). Each one is associated with
climate impacts in different regions of the Earth,
i.e., teleconnections. Also, they can imply severe
weather events such as flooding, heavy snow or
heatwaves.

Figure 2 shows the spatial sea level pressure
anomalies of the observed weather regimes in win-
ter (defined as December, January and Febru-
ary), summer (defined as June, July and August),
extended winter (defined as November, Decem-
ber, January, February, March and April) and ex-
tended summer (defined as May, June, July, Au-
gust, September and October) seasons. It can be
seen that the regimes patterns are better defined
during the winter season. Furthermore, they are
more persistent in time and have more influence on
local climate during these months (Cortesi et al.,
2019). The figure also shows the frequency of each
cluster throughout the period analysed. The most
frequent regimes in both seasons are the NAO+ and
Blocking, with NAO+ being more frequent dur-
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ing the winter and Blocking during the summer.
The data are taken from the JRA-55 reanalysis
(described in Section 2.4) for the 1960-2010 period
and the methodology used for its calculation is de-
scribed in Section 3.2. The main characteristics of
these four weather types are as follows:

� NAO+: This regime is characterised by an
anomalously high pressure differential be-
tween the Azores islands and Iceland. It in-
fluences the jet stream, the storm track and
blocking and, therefore, it affects the climate
over the North Atlantic, Western Europe and
the Mediterranean basin (Christensen et al.,
2013). Due to its spatial distribution, there
is an increase in the number and intensity of
winter storms that cross the Atlantic Ocean
in a north-easterly direction. This regime also
causes mild and wet winters in northern Eu-
rope and decreasing winter precipitation in
the Iberian Peninsula.

� NAO-: Opposite phase to NAO+, charac-
terised by an anomalously low pressure dif-
ferential between the Azores islands and Ice-
land. Westerlies are suppressed and the storm
track moves southwards, carrying moist air
towards the Mediterranean region, causing in-
creased storm activity and precipitation in
southern Europe and North Africa and cool-
ing in northern Europe.

� Blocking (BL): Strong anticyclonic anomaly
centred over Scandinavia and weaker cyclonic
anomaly over Greenland. It is associated
with persistent and slow high-pressure sys-
tems that can be associated with cold air
outbreaks, heat-waves, floods and droughts
(Christensen et al., 2013). This regime also
produces atmospheric stagnation which leads
to episodes of high pollution.

� Atlantic Ridge (AR): positive sea level pres-
sure anomaly over the Atlantic Ocean and a
negative one over Scandinavia. This weather
regime is similar to the negative phase of the
East Atlantic (EA) regime (Cortesi et al.,
2019). This regime may also appear in its
opposite form, i.e., negative sea level pressure
anomaly over the Atlantic Ocean and positive
anomaly over Scandinavia.

1.4 Objectives
The aim of this master thesis is to analyse the
impact of model initialization on the predictabil-
ity of European weather regimes on inter-annual to
decadal scales. For this, observed weather regimes
composites and time series are compared to pre-
dicted ones from both the historical runs (No-Init)
and the decadal hindcast (Init).

The master thesis is organized as follows. Sec-
tion 2 introduces both observed and experimental
data used in this study. Section 3 contains the
methodology used for the calculation of anoma-
lies and weather regimes from the clustering algo-
rithm. Results and discussion about the impact of
model initialization on the predictability of weather
regimes are shown in Section 4. Finally, conclusions
are drawn in Section 5.

2 Data
2.1 Region and period
The region assessed in this study is the Euro-
Atlantic region, delimited between 27oN-81oN and
85.5oW-45oE. This region can be seen in Figure 2.

With respect to the period analysed, data for
the years 1960 to 2010 have been used. The reason
for choosing this period is that the predictions can
be compared with good quality observations. Addi-
tionally, averages of up to 5 years have been made
for the analysis, so in some cases data up to 2014
have been used to make left-aligned moving means.
The analysis has been made for short and extended
seasons defined as follows:

� Summer: June, July and August (JJA).
� Winter: December, January and February

(DJF).
� Extended summer: May, June, July, August,

September and October (MJJASO).
� Extended winter: November, December, Jan-

uary, February, March and April (NDJFMA).

2.2 EC-Earth model
Climate models are tools to represent the behaviour
of the Earth’s climate based on mathematical rep-
resentation using the laws of physics and thermo-
dynamics. The EC-Earth model is an Earth Sys-
tem Model (ESM) developed by a consortium of
European research institutions, in which Barcelona
Supercomputing Center (BSC) is involved. It in-
tegrates a number of component models in order
to simulate the whole earth system for uses such
as seasonal to decadal climate prediction and cli-
mate projections. Earth System Models incorpo-
rate explicitly the interactions between the physi-
cal climate system and the biogeochemical and hu-
man processes. The experiments used in this study
have been produced with the EC-Earth model v3.2,
whose description can be seen in Doblas-Reyes et
al. (2018).

The atmospheric component of the EC-Earth
model is based on the Integrated Forecasting Sys-
tem (IFS) corresponding to the seasonal forecast
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(a) Winter - DJF (b) Summer - JJA

(c) Extended winter - NDJFMA (d) Extended summer - MJJASO

Figure 2. Composites of the averaged sea level pressure anomalies (hPa) of the observed weather regimes in
normal and extended winter and summer seasons for the JRA-55 reanalysis during the 1960-2010 period.

The region analysed is delimited between 27oN-81oN and 85.5oW-45oE

system of the European Centre for Medium-Range
Weather Forecasts (ECMWF). Its horizontal spec-
tral resolution is T255, i.e., triangular truncation
of 255 of the infinite spherical-harmonic series that
represent each prognostic variable. This resolution
provides 256 latitude and 512 longitude grid points,
with 0.54o (∼ 78 km) of distance between two of
them at the equator. In the vertical, it uses hybrid
sigma-pressure coordinates, solving the equations
in 91 levels up to 0.02 hPa (Hazeleger et al., 2010).

The EC-Earth model also uses the land and veg-
etation module of the IFS: the Hydrology Tiled
ECMWF Scheme of Surface Exchanges over Land
(HTESSEL). It has a simple snow scheme with an
explicit snow layer (Orth et al., 2017).

The ocean component is based on the Nucleus
for European Modelling of the Ocean (NEMO)
model, ORCA1 configuration. It uses a tripolar
grid with an horizontal resolution of 1o (362 lati-
tude and 292 longitude grid points) and 75 vertical
levels, with the top one located 10 meters below
the ocean surface (Breivik et al., 2015). It gets the
atmospheric forcing from the IFS.

The sea ice component is the Louvain-la-Neuve
Sea Ice Model, version 2 (LIM2), with three layers:

one for snow and two for ice. It has different compo-
nents: thermodynamics, dynamics, advection, ridg-
ing and rafting (Uotila et al., 2016).

The Atmospheric chemistry component is the
Tracer Model, version 5 (TM5). It is a three-
dimensional global atmospheric chemistry trans-
port model with the ability to simulate the com-
position of the atmosphere at both global and re-
gional scales (Huijnen et al., 2010). However, this
component was not activated in the historical runs
and decadal predictions used in this study.

The coupling of all its components is carried out
by the Ocean Atmosphere Sea Ice Soil (OASIS) cou-
pler model (Hazeleger et al., 2010).

2.3 Hindcast experiments
In this study, the first ten historical simulations
(No-Init) available from the twenty-six simulations
currently being prepared with the EC-Earth model
for the sixth phase of the Coupled Model Inter-
comparison Project (CMIP6) were used. All the
historical runs are started from the Pre-Industrial
(PI) control run, taking their initial states every 20
years. The PI control run starts from the spin-up,
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which has reached a reasonable equilibrium state.
The only difference between those historical simu-
lations is the initial state, so they are ideally inde-
pendent and are able to give a better representation
of all possible climate states. These simulations are
forced by external forcings observed from 1850 on-
wards (Taylor et al., 2012).

In reference to the decadal predictions (Init), the
first five members available were used. They are
also run with the EC-Earth model, with the full-
field initialization technique. For these runs, at-
mospheric initial conditions have been taken from
ERA-40 reanalysis for the period 1960-1978 and
ERA-Interim reanalysis for the period 1979-2018.
The ocean and sea ice initial conditions have been
taken form historical ocean-sea ice reconstruction
using the NEMOmodel forced by the Drakkar Forc-
ing Set v4.3 (DFS4.3) atmospheric reanalysis and
strongly constrained by the Ocean ReAnalysis Sys-
tem 4 (ORAS4) ocean reanalysis using 3D-nudging
data assimilation (Eyring et al., 2016). The predic-
tions are initialized every year in November, pre-
dicting the next 11 years. Therefore, a greater im-
provement would be expected for the first winter
season than for the summer season by starting the
model in November. The forcings used for the pe-
riod analysed are the same as those used in the
historical experiments.

2.4 JRA-55 reanalysis
The Japanese 55-year Reanalysis (JRA-55) project
is conducted by the Japan Meteorological Agency
for the period from 1958 onward. This global re-
analysis has a 4D-VAR assimilation algorithm. The
horizontal grid system is a reduced Gaussian grid
with an horizontal resolution TL319 (1.25o ∼ 55
km). 60 vertical hybrid levels are defined with half-
levels as the boundary, up to 0.1 hPa (Kobayashi
et al., 2015). Products are available for six-hourly,
daily and monthly values. Additionally, land sur-
face and two-dimensional fields are output at three-
hourly intervals.

Sea level pressure data from this reanalysis are
used during clustering analysis to evaluate both his-
torical simulations and decadal predictions.

2.5 ERSST.v4 dataset
The monthly Extended Reconstructed Sea Surface
Temperature version 4 (ERSST.v4) dataset is de-
veloped by the National Oceanic and Atmospheric
Administration (NOAA) from 1854 onward. This
global dataset provides monthly SST with 2o x 2o

grid points as horizontal resolution. The anomalies
are calculated relative to the 1971-2000 monthly cli-
matology. The data are derived from the Interna-
tional Comprehensive Ocean–Atmosphere Dataset

(ICOADS) and the missing data are filled using
statistical methods (Huang et al., 2015; Liu et al.,
2015).

SST data from this dataset are used to measure
the relation of the weather regimes frequency with
the SST time series.

3 Methodology
3.1 Climatologies and anomalies
Monthly climatologies are calculated for both ex-
periment and reanalysis datasets and it is smoothed
out by applying a Locally Estimated Scatterplot
Smoothing (LOESS) filter (Cleveland and Devlin,
1988). This filter avoids discontinuities in the limits
between different months, removing the short-term
variability and retaining the annual cycle (Torralba,
2019).

Daily standardized anomalies are obtained
based on the smoothed monthly climatology, which
are previously weighted by the cosine of the latitude
to take into account the different sizes of the grid
boxes in the region studied. After that, they are in-
troduced into the clustering algorithm to compute
the weather regimes for both the reanalysis and the
experiments (Section 3.2).

3.2 K-means clustering algorithm
Clustering analysis has been used in this study
to obtain the seasonal weather regimes of daily
sea level pressure standardized anomalies over the
Euro-Atlantic region. It is an optimization method,
which arranges a set of days within groups, called
clusters, seeking the most steady states. It is nec-
essary to apply the clustering analysis to the stan-
dardized anomalies, since this allows to compare
different seasons and regions. After analysis, they
are converted into non-standardized anomalies for
map representation.

There are several clustering algorithms, but one
of the most commonly used in climate research is
the k-means algorithm. The k-means clustering al-
gorithm minimizes the sum of the squared distances
from each point to the centroid of the clusters to
which they belong, providing the common spatial
patterns in the analysed area. This algorithm starts
with an initial cluster partition and, with an itera-
tive process, it assigns the daily maps to the nearest
cluster (assignment phase) and recalculates its cen-
troid in each iteration (update phase). A drawback
of the algorithm is that it tends to produce groups
with similar sizes, leading to worse clustering re-
sults. More information about this algorithm and
other clustering algorithms can be found in Philipp
et al. (2010).

Clustering analysis can be applied to the actual
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sea level pressure field (where the dimensions are
each point in the map grid, as in Torralba (2019))
or over principal components (where the dimen-
sions are the first Empirical Orthogonal Functions
(EOFs), as in González (2018)). In this study, the
clustering analysis is applied to daily fields of sea
level pressure in order to keep as much information
as possible about the data, also taking into account
the extreme values.

The number of clusters k to generate has to
be specified in advance. Fereday et al. (2008)
assessed the optimal number of clusters and con-
cluded that there is no objective choice of the num-
ber of clusters. Also, they found that for small k
values the full range of patterns is not correctly
represented, while if a large k is chosen different
clusters look very similar. The number of clusters
generated in this study is k = 4, corresponding to
the weather regimes defined in Section 1.3: NAO+,
NAO-, Blocking and Atlantic Ridge.

Weather regimes are calculated using two differ-
ent methods:

� Method 1: observed weather regimes are cal-
culated by a cluster analysis with the k-means
algorithm. After that, simulated weather
regimes are calculated by projecting them on
the observed ones. This projection is car-
ried out with the minimum Euclidean dis-
tance method. With this method, the mod-
elled weather situations are forced to fit into
the observed ones, and so it is analysed how
often the model simulates situations that fit
into the observed patterns.

� Method 2: both observed and simulated
weather regimes are calculated independently
by a cluster analysis with the k-means algo-
rithm. This method shows how the model
defines its own weather regimes and allows to
compare the spatial patterns of modelled and
observed dominating weather patterns.

After obtaining the weather regimes for all sea-
sons, all members and both methods, it is necessary
to match the clusters, since the clustering algorithm
does not provide them in a pre-defined order. For
example, cluster 1 can be NAO+ in one case and
Blocking in another case. To do so, weather regimes
obtained for every case are sorted based on their
spatial correlation with the observed ones in winter
season, displayed in Figure 2a.

3.3 Metrics
The metric used to measure the spatial correlation
between the ensemble mean of the weather regimes
obtained after applying the k-means algorithm and
the reference weather regimes is the Anomaly Cor-
relation Coefficient (ACC). It is defined in terms of

deviations from mean historical climatological val-
ues, as can be seen in Equation 1 (Murphy, 1995).
Its value can be between -1 and +1. If the ACC is
equal to +1, it means that the maps are positively
correlated in a perfect way. On the contrary, if it
is equal to -1, the maps are inversely correlated. If
this coefficient is zero, there is no linear correlation
between the two maps.

ACC =
∑n
i=1(vi − v̄)(oi − ō)√∑n

i=1(vi − v̄)2 ∑n
i=1(oi − ō)2

(1)

Where n is the number of grid points, vi repre-
sents the values of the map wanted to match, v̄ its
climatological value, oi the values of the reference
map and ō the climatological value of that reference
map.

To measure time correlation, the correlation co-
efficient of Pearson r is used. Like the ACC, its
value is between -1 and +1 and is defined accord-
ing to Equation 2 (Gorgas et al., 2015). This coef-
ficient is used to measure the correlation between
the reanalysis and the ensemble mean of both the
historical simulations and the decadal predictions.
In the case of decadal predictions, the correlation
between the different members is also measured.

r = σv,o
σvσo

(2)

Where σv,o is the covariance between v and o
and σv and σo the variance of the time series.

To analyse whether the time series correlation
between experiments and reanalysis is statistically
significant, a t-test is carried out. In this test, the
test statistic follows a Student’s t-distribution with
n−2 degrees of freedom and a significance level, de-
noted α, and the correlation is significant if Equa-
tion 3 is fulfilled (Gorgas et al., 2015). The number
of years used in this study is 51, so there are 49
degrees of freedom.

|r|
√
n− 2√

1− r2
≥ tα/2,n−2 (3)

This test is also used to assess the significance of
the correlation between the SST and the frequency
of the weather regimes.

It should be noted that the significance of cor-
relations may be overestimated in cases that have
been averaged over different years, as the series
have been smoothed, which reduces the degrees of
freedom. This would be possible to fix by using an
effective size of the time series (Metz, 1991).

To compare the initialization improvement of
the simulations, cases which the confidence inter-
vals of the correlation coefficient of historical simu-
lations and decadal predictions do not overlap are
sought.
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(a) DJF - Method 1 (b) JJA - Method 1

(c) DJF - Method 2 (d) JJA - Method 2

Figure 3. Composites of the averaged sea level pressure anomalies (hPa) of the simulated weather regimes in
winter and summer seasons with both methods for the 1960-2010 period using historical runs. The frequency

and the spatial correlation with the observed regimes are also displayed for each weather regime.

4 Results and discussion
Due to the amount of figures, only those referring
to normal seasons (DJF and JJA) will be shown
here. However, the figures corresponding to the ex-
tended seasons (NDJFMA and MJJASO) and to
averaging different numbers of years (from 2 to 5)
to carry out the comparison are shown in Annex
A (for the historical simulations) and Annex B (for
the decadal predictions). In the case of some fig-
ures, all results are shown together (including those
of the extended seasons) for a better comparison.

4.1 Historical simulations (No-Init)
In this section, the results of historical simulations,
i.e., uninitialized simulations, are analysed.

Figure 3 shows the composites of the aver-
aged sea level pressure anomalies of the simulated
weather regimes in the winter and summer seasons
with both methods applied to the 1960-2010 period.
Also, the frequency of each weather regime and the
spatial correlation with their respective observed
clusters are displayed.

As it can be seen, the four clusters are more in-

tense and better defined in the winter season. Sim-
ilarly, the intensity of clusters is higher in method
1 than in method 2. This may be because, at the
beginning of the k-means algorithm, maps may be
assigned to some centroid that does not correspond
to it because the clusters are not fully defined yet.
On the contrary, in method 1, the clusters are al-
ready defined, so each map is projected onto the
centroid that actually corresponds.

With respect to the spatial correlation between
simulated and observed weather regimes, NAO+,
NAO- and Blocking show a correlation between
0.98 and 1 for method 1 and a correlation between
0.93 and 0.98 for method 2. These results indicate
that the spatial patterns of the weather regimes in
the model are very similar to the observed weather
regimes that occur in the analysed region. In the
case of the Atlantic Ridge weather regime, it shows
a good correlation for method 1, but it shows the
lowest spatial correlation for method 2, with a value
of 0.88 in winter and -0.37 in summer. The nega-
tive value of the correlation indicates that the clus-
ter has been obtained spatially opposed to the ob-
served one. Many times, using method 2, one of
the clusters is obtained in its opposite form, which
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Figure 4. Box-and-whisker diagrams of the time series of each weather regime in short and extended seasons
with both methods for the 1960-2010 period using historical runs. Grey boxes correspond to the reanalysis.

On the left of each one, coloured boxes correspond to historical (No-Init) simulations and clusters
identified with method 1 and, on the right, with method 2. The filled dots represents the mean

of the time series and the unfilled dots the outliers. Historical simulation boxes have been
obtained using the different members without averaging.

is normal when applying this algorithm. The spa-
tial correlation is improved for every cluster in the
extended season, due to more robust results when
using a greater number of days. These composites
relating to the extended season can be seen in Fig-
ure A.1 in Annex A. The high spatial correlation
obtained with method 1 is largely a consequence
of applying patterns identified based on reanaly-
sis data to the model, while the good correlation
with method 2 means the model defines the clus-
ter distributions reasonably similar to the observed
climate.

The different cluster frequencies are between
21.7% and 28.2%, similarly to the reanalysis.

Blocking is the most frequent weather regime in
summer for both methods (same as in the reanaly-
sis), while NAO+ is the most frequent one in winter
for method 1 and in the reanalysis (but is second
behind Blocking in method 2). However, weather
regimes do not occur every year with the same fre-
quency, and there is a variability of occurrence from
year to year. This variability can been seen in Fig-
ure 4, where a box-and-whisker diagram shows the
mean, the quartiles, the extremes values and the
outliers1 of the annual time series of each weather
regime. The grey boxes correspond to the reanal-
ysis, while the coloured boxes correspond to the
historical experiments (with method 1 at the left of

1An outlier is a value that lies more than one and a half times the length of the box from either end of the box, i.e., the
interquartile range.
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(a) DJF - Method 1

(b) JJA - Method 1

Figure 5. Time series of the frequencies of the simulated and observed weather regimes in winter and summer
seasons with both methods for the 1960-2010 period using historical runs. The thin coloured lines correspond to
each member, the thick coloured lines to the ensemble mean and the black lines to the reanalysis. The time

series correlations between simulations and reanalysis are also displayed for each weather regime.
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(c) DJF - Method 2

(d) JJA - Method 2

Figure 5. (Cont).
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each observed box and with method 2 at the right).
The mean frequency is also displayed with dots in
every box.

The box-and-whisker diagrams indicate a gen-
erally good match between the observed and simu-
lated variability of the weather regimes. For most of
them, both the mean, the median and the quartiles
of the simulated time series show a value similar
to those of the observed time series. Nevertheless,
there are some cases in which simulations do not
match the reanalysis. For example, during the sum-
mer, the frequency of NAO- is overestimated with
both methods and the frequency of Atlantic Ridge
is underestimated using method 1. The opposite
happens in the extended summer, when this last
cluster is overestimated with method 2. During the
winter, the model slightly underestimates the mean
frequency of NAO+ and overestimates the one of
NAO-. Also, the model underestimates the spread
of both NAO phases, while only NAO- spread is
underestimated in the extended winter. During the
extended summer, there is an overestimation of the
frequency spread of the Blocking weather regime.
The frequencies of the rest of weather regimes in
extended seasons match very well with the reanal-
ysis.

As it can be seen, the most frequent regime dur-
ing the summer is Blocking, both for the normal
season and for the extended one. During the win-
ter, NAO+ and Blocking regimes are the most fre-
quent ones for both the reanalysis and the experi-
ments, while in the extended winter the frequencies
of all clusters are similar, with Blocking being a lit-
tle higher.

With reference to the frequencies of the weather
regimes, they show a wider spread in winter than
in summer, specially both phases of the NAO, for
which the spreads are the widest ones. In contrast,
the narrowest spread occurs during the extended
seasons, especially in extended summer, when the
frequencies of all the weather regimes show the nar-
rowest spread for both the reanalysis and the sim-
ulations.

The diagrams for averaging from 2 to 5 years
to see the lower frequency oscillations in the atmo-
sphere can be seen in Figure A.2 in Annex A. The
averaging has been carried out with a left-aligned
moving mean, so data up to 2014 had to be used
for the average of the last years. They show less
frequency spread as more years are averaged and,
generally, simulations match with reanalysis using
both methods. However, one thing to note is the
underestimation by the model of the NAO- spread
during the normal and extended winter season and
the overestimation of the frequency value during
the summer season.

Figure 5 shows the time series of the frequencies
of the simulated and observed weather regimes in

winter and summer season with both methods for
the 1960-2010 period. The time series related to ex-
tended seasons can be seen in Figure A.3 in Annex
A. The thin coloured lines correspond to each mem-
ber of the ensemble, while the thick coloured lines
correspond to the ensemble mean and the black
lines to the reanalysis. The series correlation be-
tween simulations and reanalysis is also displayed
above each graph.

As discussed below, in general, the model repro-
duces well the frequency variability of all weather
regimes, since each member oscillates in the range
of the reanalysis. However, since the simulations
are not initialised, the different phasing between
them causes that the correlations between the ob-
served time series and the ensemble mean of the
historical simulations are close to zero. This low
correlation and absence of trend suggests that ex-
ternal forcings during the period under analysis do
not project changes in the frequency of weather
regimes.

4.2 Decadal predictions (Init)
In this section, a similar analysis to the previous one
is carried out, but for the initialised decadal predic-
tions. In the same way, figures of the spatial distri-
bution, box-and-whisker diagrams and time series
of the weather regimes are shown.

As explained in Section 1.2, initialization con-
sists in introducing the observations as initial con-
ditions of the model run. This is intended to phase
in the oscillations of the climate system in order
to try to predict its evolution. For this study, re-
sults of decadal predictions, which are initialized
each year in November, are analysed from the first
to the fifth forecast year, also assessing all the pos-
sible combinations of averages of these years.

Figure 6 shows the composites of the aver-
aged sea level pressure anomalies of the predicted
weather regimes in winter and summer with both
methods for the forecast year 1. As for the figures
of the historical simulations, the frequency of each
cluster and the spatial correlation with the reanal-
ysis are shown. The same figure for the extended
seasons can be seen in Figure B.1 in Annex B.

The averaging of the different forecast years does
not relevantly affect the composites, as the model
simulates the same weather regimes for all pre-
dicted years (not shown). In addition, with method
1 it assigns to each cluster very similar frequencies
to those obtained in the historical simulations and
all clusters have a nearly perfect spatial correlation
with the reanalysis. Also, they are still more de-
fined in winter than in summer.

On the contrary, the spatial correlation of
NAO+ and Blocking presents lower values than in
historical simulations with method 2 and, similarly,
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(a) DJF - Method 1 (b) JJA - Method 1

(c) DJF - Method 2 (d) JJA - Method 2

Figure 6. Composites of the averaged sea level pressure anomalies (hPa) of the predicted weather regimes in
winter and summer seasons with both methods for the 1960-2010 period using decadal predictions for year 1.
The frequency and the spatial correlation with the observed ones are also displayed for each weather regime.

the Atlantic Ridge has a negative spatial correla-
tion with this method in some cases, most common
in summer, but its absolute value has increased re-
spect to that of the historical simulations.

When comparing normal seasons and extended,
extended summer has a higher spatial correlation
than normal summer. With regard to winter, the
correlation is slightly higher in the extended season
with method 1 and lower with method 2.

As explained above, the frequency of each
weather regime is not the same every year, but
varies from year to year. This variability of oc-
currence during the analysed period can be seen
in the box-and-whiskers diagrams shown in Figure
7. They provide information on the mean, median,
quartiles, extreme values and outliers of the time
series of the weather regimes. These time series are
related to reanalysis (grey boxes, same as in Figure
4) and predictions (to the left of each grey box with
method 1 and to the right with method 2).

The diagrams are very similar to those of histori-
cal simulations, showing similar values of the mean
frequency, median and interquartile ranges. This
similarity makes sense since it is the same model,
so it tends to reproduce the same variability. Nev-

ertheless, the most notable difference is the lesser
presence of outliers in the decadal predictions, so
these predictions result in fewer unusual values,
comparing better to the reanalysis, which have few
or no outliers.

The initialised predictions still have the same
biases as the non-initialized simulations. The fre-
quency of NAO+ is well simulated in general, being
a little underestimated in the short winter, where
both the mean and the spread are underestimated
with method 2. With respect to NAO-, the model
still overestimates the value of its frequency with
both methods in summer, while it slightly underes-
timates its spread in the extended winter, similarly
to historical simulations. Another repeated biases
are the overestimation of the Blocking frequency
spread, the overestimation of its frequency in winter
and the underestimation in summer. This does not
happen in the extended winter, when its variabil-
ity is very well reproduced. The frequency of the
Atlantic Ridge regime is reasonably well simulated
during the winter. However, during the summer
there is an underestimation with method 1 in the
short season and an overestimation with method 2
in the extended season.
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Figure 7. Box-and-whisker diagrams of the time series of each weather regime in short and extended seasons
with both methods in 1960-2010 period using decadal predictions for year 1. Grey boxes correspond to

reanalysis. On the left of each one, coloured boxes correspond to predictions with method 1 and, on the right,
with method 2. The filled dots represents the mean of the time series and the unfilled dots the outliers. Decadal

predictions boxes have been made with the different members without averaging.

The diagrams related to the prediction of the
second to fifth year, shown in Figure B.2 in Annex
B, have the same behaviour as that of year 1. In
general, they overestimate and underestimate the
frequency of the different regimes in the same sea-
sons as the previous figure. Similarly, the number
of outliers continues to be lower than that obtained
in historical simulations.

Analogous to what was done in the historical
simulations, the average of different forecast years
was done to filter the signal and try to see the lower
frequency oscillations of the climate system. The
prediction for year 1 is considered to be that of
the same year in which it is initialized (it is impor-
tant to remember that predictions are initialized in
November, so lead year 1 ends in October of the
following year). The results for all combinations of

forecast year averages are shown in Figure B.3. In
order to make the average, data from decadal pre-
dictions were necessary until 2014, since the aver-
age has been calculated with a left-aligned moving
mean. These diagrams show a narrower spread as
they are averaged over a greater number of years.
Similarly, they show, in general, fewer number of
outliers with more averaged years. However, the
same cases remain where the model overestimates
or underestimates the mean frequency or spread of
the time series.

The model generally reproduces well both the
value and the spread of the frequency of the weather
regimes, but for their prediction it is important to
increase the temporal correlation to know periods
in which a regime will be more or less frequent
than normal. Figure 8 represents the time series
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(a) DJF - Method 1

(b) JJA - Method 1

Figure 8. Time series of the frequencies of the predicted and observed weather regimes in winter and summer
seasons with both methods for the 1960-2010 period using decadal predictions for year 1. The thin

coloured lines correspond to each member, the thick coloured lines to the ensemble mean
and the black lines to the reanalysis. The time series correlations between predictions
and reanalysis are displayed for each weather regime, also showing the maximum and

minimum value of the correlation calculated from each member separately.
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(c) DJF - Method 2

(d) JJA - Method 2

Figure 8. (Cont).
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of the observed frequency of the weather regimes
(black line), those predicted by each member (thin
coloured lines) and the ensemble mean of the pre-
dictions (thick coloured line) using decadal predic-
tions for year 1. Also, the time series correlations
between predictions and reanalysis are displayed for
the ensemble mean and for the maximum and min-
imum value obtained from each member taken sep-
arately. The figures corresponding to the predicted
years 2, 3, 4 and 5 can be seen in Figures B.5 -
B.8 in Annex B and the ones corresponding to av-
eraging all possible combinations of forecast years
in Figures B.9 - B.18.

One of the main differences with respect to the
time series of historical simulations is that, when
calculating the ensemble mean by averaging the
different members used, the variability is cancelled
slightly less during the whole period. This is due to
the fact that, with the initialization, an attempt is
made to put the members of the ensemble in phase.
As in historical simulations, as a larger number of
years is averaged, the spread of the time series de-
creases.

It should also be noted that the time series of
the frequencies in the extended seasons have a lower
spread than in the normal seasons. This may be due
to the greater presence of transition days during
the autumn and spring months, which are assigned
to the nearest centroid in the k-means algorithm,
but which would not really have to belong to any
weather regime and have been assigned almost ran-
domly. Another cause is the greater number of days
used for each value in the time series (∼90 for nor-
mal seasons and ∼180 for extended seasons), which
smooths the series.

4.3 Impact of model initialization

Figure 9 summarizes the correlation between sim-
ulated and observed time series of the weather
regimes obtained with historical simulations and
decadal predictions. The columns correspond to
the historical simulations averaged over X years
(No-Init_X) and to the decadal predictions aver-
aged from year X to year Z (yX-Z). The rows cor-
respond to the different seasons analysed and the
method used to define the clusters is displayed in
brackets. The correlations relative to the positive
phase of the NAO are displayed in the left triangles,
the negative phase in the lower ones, the Blocking
in the right ones and the Atlantic Ridge in the up-
per ones. Red colours indicate that the correlation
coefficient is positive, while blue colours indicate
that it is negative. Those correlations that are pos-
itive and statistically significant at 95% confidence
level are marked with a dot in the figure. It should
be noted that the correlation can be overestimated
as more years are averaged because the series be-
come smoother.

As it can be seen, the time series relative to the
historical simulations present a correlation coeffi-
cients very close to zero. In the averages of several
years of these simulations the correlation increases
a little, but it is a consequence of the smoothing, as
explained above. The correlation coefficients cor-
responding to the decadal predictions increase in
some cases, but also decrease in others.

Although every weather regime shows both pos-
itive and negative correlation depending on the sea-
son and the chosen forecast year, it seems that
Blocking is the regime that presents the highest

Figure 9. Time series correlation between simulations and reanalysis of each weather regime. In the horizontal
axis, "No-Init_X" refers to historical simulations averaged X years, while "yX-Z" refers
to decadal predictions averaged from year X to year Z. In the vertical axis, the number

in brackets indicates the method used. Dots indicate the correlation is positive
and statistically significant at 95% confidence level with a t-test.
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Figure 10. Time series correlation difference between historical simulations and decadal predictions. In the
horizontal axis, "yX-Z" refers to predictions averaged from year X to year Z. In the vertical axis, the

number in brackets indicates the method used. Dots indicate the correlation of the decadal
prediction is statistically different to that of the historical simulation at 95% confidence level.

correlation with the reanalysis and has a few cases
that show statistically significant correlations at the
95% confidence level with the t-test. This occurs,
above all, during the summer season, both normal
and extended, with both methods. The forecast
years in which this correlation is greatest are year
2, 3 and 4, including some of the averages in which
they are considered. For the winter months, the
Blocking regime also shows cases where the corre-
lation is significant, but only using method 1 for
year 1 and the average of forecast years 1 and 2.

The next regime with the highest number of
statistically significant cases is the Atlantic Ridge,
which achieves the highest correlation with both
methods averaging the last forecast years analysed
during the winter season, i.e., 2-5 and 3-5 fore-
cast years. Then follows the NAO- regime, which
has only one time series that correlates significantly
with the reanalysis: averaging the predicted years 3
and 4 for summer with method 2. Finally, the posi-
tive phase of the NAO shows no statistically signifi-
cant correlation between its simulated and observed
time series.

With the aim of highlighting where the initial-
ization of the model has had a positive impact on
the predictability of weather regimes, the difference
between the correlation coefficient of the decadal
predictions and that of the historical simulations
is calculated, and is displayed in Figure 10. The
red colours correspond to those cases in which the
impact of initialisation has been positive, i.e., the
correlation coefficient has been increased. On the
contrary, the blue colours indicate that the initial-
ization has had a negative impact on the predic-
tions. In this case, dots indicate the correlation
coefficient of the decadal prediction is statistically
different to that of the historical simulation at 95%

confidence level. Thus, red colour with dot means
the correlation coefficient of the initialised simula-
tion is significantly greater and blue colour with dot
means it is significantly lesser.

As the previous one, this figure does not show a
clear pattern of the impact of initialization on im-
proving the correlation of weather regimes time se-
ries. Their predictability is improved in some cases
and worsened in others. Nevertheless, it seems that
Blocking and NAO- regimes are the ones that have
most increased their predictability by the initializa-
tion of the model.

In the case of Blocking, the correlation coeffi-
cient has increased its value in summer, especially
in the extended season, in which are all significant
improvements obtained. This occurs with both
methods, and the increase is higher for the second
and third forecast years. This improvement in the
simulation of the Blocking frequency also occurs in
the first forecast year and in the average of the first
and the second year during the extended winter.
On the other hand, there is a worsening in its sim-
ulation during the winter when averaging years 1-4
and 1-5.

The second regime that has most increased the
correlation of its time series of frequency with
reanalysis, NAO-, shows an improved correlation
with both methods in summer. However, there are
not simulations that have increased the correlation
coefficient significantly due to initialization.

The other two regimes do not show so many
cases in which initialization can provide an extra
predictability of their frequency. Neither Atlantic
Ridge nor NAO+ show cases where improvement
has been statistically significant. Regarding At-
lantic Ridge, the first and third forecast years show
the greatest improvements in the simulation of this
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(a) Observed SST vs Blocking frequency (b) Predicted SST vs Blocking frequency

(c) Observed SST vs NAO- frequency (d) Predicted SST vs NAO- frequency

Figure 11. Time series correlation between the observed and predicted (for forecast year 2) SST and the
observed frequency of Blocking and NAO- regimes in the extended summer. Data for the 1962-2012
period have been used for the observed frequency of the regimes and the observed SST, and data

for the forecast year 2 of the simulations initialized in the years 1960-2010 for the
predicted SST. Crosses indicate the correlation is significant in that

grid point at 95% confidence level with a t-test.

weather regime. With respect to NAO+, its cor-
relation after initialization worsens in almost all
cases. In addition, it shows numerous cases in
which initialization significantly decreases correla-
tion, especially in winter and extended summer.
Then, the initialization does not have a clear posi-
tive impact for this regime.

In general, the season that has the best impact
due to the model initialization is the summer, both
the normal and the extended season, although it
also shows cases in which initialization has had a
negative impact.

4.4 Teleconnections with the Sea
Surface Temperature

As seen in the previous section, the greatest im-
provements after model initialization have been
found during the second and third year predicted
for the Blocking regime during the summer, mainly
in the extended season. To try to understand the
reason for this improvement, we look for telecon-
nections with the SST, variable that presents a slow
variability and that could contribute to the model
skill in the prediction of the Blocking frequency.
Then, observed frequency of the weather regimes

and both predicted (from initialized simulations)
and observed SST are compared.

Figure 11 shows the time series correlation be-
tween the observed and predicted (for forecast year
2) SST and the observed frequency of Blocking
and NAO- regimes in the extended summer for the
1962-2012 period. Therefore, data for the 1962-
2012 period have been used for the observed fre-
quency of the regimes and the observed SST, and
data of the initialised simulations in the years 1960-
2010 for the forecast year 2 for the predicted SST.
Crosses indicate the grid points at which correla-
tion is statistically significant at the 95% confidence
level with a t-test. Regime frequencies are taken
from the JRA-55 reanalysis and the observed SST
is taken from the ERSST.v4 dataset.

The Blocking regime is associated with periods
of drought, heat waves and flooding over Europe.
Blocking events, which usually last 5 or more days,
also affect wind patterns and, therefore, ocean cir-
culation and downward and upward pumping of
water. Häkkinen et al. (2011) show frequent at-
mospheric Blocking coincide over AMV time scales
and suggest that Blocking frequency is more im-
portant than the NAO in climate variability in the
Atlantic Ocean. In addition, Blocking is also re-
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lated to warm water displacements to the north,
both on the surface and in lower layers. In Häkki-
nen et al. (2011), they found that the warmest
periods occur in the North Atlantic Ocean when
the frequency of the Blocking regime is high during
the winter. However, as can be seen in Figure 11,
this does not happen during the extended summer
season, but the SST in the North Atlantic is nega-
tively correlated with the frequency of the Blocking
regime, that is, when this ocean is colder, Blocking
is more frequent. This is shown for both reanaly-
sis and predictions. Therefore, the initialization of
the model two years earlier has improved the pre-
diction of the Blocking frequency and is probably
due to the initialization of the SST in the North
Atlantic region, as it is where the two figures show
a great similarity.

Regarding the other regime, a high correlation
has also been found in the North Atlantic region
between the SST and the frequency of the NAO-.
In this case the correlation is positive, so anomalous
high temperatures of the North Atlantic Ocean are
associated with higher frequencies of this regime,
as can be seen in Figures 11c y 11d. In this case,
other regions such as the Western Pacific Ocean
also show this positive correlation in both reanal-
ysis and predictions. Thus, in addition to AMV,
other modes of variability could influence the in-
crease of the skill of the model by predicting this
weather regime during the extended summer. This
opposite-signed relationship between the NAO and
the AMV was also found by Peings and Magnus-
dottir (2014) during the winter season, when the
positive phase of the AMO is related to more fre-
quent NAO-.

5 Conclusions
In this study, European weather regimes have been
analysed for the 1960-2010 period in order to as-
sess the impact of model initialization on their pre-
dictability. For that, both historical simulations
and decadal predictions have been used.

The model simulates very well the spatial distri-
bution of the weather regimes, showing a high spa-
tial correlation with the reanalysis for both phases
of the NAO and Blocking regimes for both methods
(with slightly higher values with method 1). Re-
garding the AR, this regime shows the lowest spa-
tial correlation, even being negative in some cases
with method 2.

The most frequent regime during the summer
season is Blocking and the least frequent regime
is the NAO-. For the winter season, NAO+ and
Blocking are the most frequent ones, mainly in the
short season, while the frequencies are more similar
in the extended winter.

Variability in historical simulations is cancelled

out by averaging the different members of the en-
semble due to the different phasing between the
simulations. Thus, the temporal correlation of the
ensemble mean with the reanalysis is always close
to zero. If external forcings played an important
role in the frequency of weather regimes, it would
be expected that the historical simulation repro-
duce it when averaging all members, but they do
not.

In general, the mean values of the frequencies of
the four weather types are well simulated by the
model. However, during the summer, the model
overestimates the frequency of NAO- and underes-
timates the AR with method 1, and overestimates
AR with method 2. During the winter, the model
underestimates the spread of NAO- and overesti-
mates that of Blocking. Also, the frequencies of all
clusters show a narrower spread during the summer
season.

In most cases, initialization does not provide sig-
nificant improvements in the prediction of weather
regimes. This may be due to the fact that the sys-
tem loses memory very quickly (in a few days) and,
when carrying out the study on averages of 3 and 6
months, the impact of initialization is not noticed.

Nevertheless, some situations have been found
in which initialization has a positive impact on
predictions and the skill of the model in predict-
ing weather regimes time series has been signif-
icantly increased. This may be due to the fact
that other components, such as the ocean and ice,
have a longer memory and are better sources of
predictability in decadal predictions. This mem-
ory can be transferred from the ocean to the at-
mosphere by teleconnections, as seen in the case
of the SST. The season in which this improvement
is greatest is the summer season, when the skill
in NAO- and Blocking regimes prediction always
improves for both individual and averaged forecast
years with method 1. For method 2, the improve-
ment is slightly lower for these two regimes, espe-
cially for the first years predicted. Regarding the
other two regimes, Atlantic Ridge shows few im-
provement, while the predictability of NAO+ de-
creases in the initialised runs.

In general, this impact due to initialization is
much greater in summer than in winter. Although
the initialization is carried out in November, only
Blocking and Atlantic Ridge regimes show a high
correlation during the first forecast year in the ex-
tended winter season, which starts in November.
The reason why the rest of the cases in the first
forecast year are not improved may be due to the
shock suffered by the model when it is initialized.
This shock is due to the fact that the initial condi-
tions given to the model for initialization are very
different from its climatology and the model is not
able to reproduce well the evolution of that state of
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the system (Pohlmann et al., 2017).
The frequency of Blocking and NAO- regimes

may be influenced by the AMV and the initializa-
tion of the model is able to influence the North
Atlantic region and increase the skill of the model
predicting these two regimes.

There may be possible improvements to this
study, such as using a more complex classification
algorithm instead of the k-means, using anomaly
initialization for the decadal predictions or using
geopotential height at 500 hPa instead of sea level
pressure during the summer to reduce spatial noise
(Cortesi et al., 2019). Similarly, a improvement in
the analysis of the correlation of time series that
have been generated from the average of different
simulated years would be to use an effective size of
those time series.

In addition, the rest of the cases, both other
years and other seasons, in which the correlation
has been improved by initialization can be further
investigated to understand this improvement in the
model skill and to seek the sources of predictability
that make it possible.
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Annex A: Additional figures for the historical simulations

(a) NDJFMA - Method 1 (b) MJJASO - Method 1

(c) NDJFMA - Method 2 (d) MJJASO - Method 2

Figure A.1. Same as Figure 3, but for the extended seasons.
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(a) 2 years averaged (b) 3 years averaged

(c) 4 years averaged (d) 5 years averaged

Figure A.2. Same as Figure 4, but for 2, 3 4, and 5 years averaged.
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(a) NDJFMA - Method 1 (b) MJJASO - Method 1

(c) NDJFMA - Method 2 (d) MJJASO - Method 2

Figure A.3. Same as Figure 5, but for the extended seasons.
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(a) DJF - Method 1 (b) JJA - Method 1

(c) DJF - Method 2 (d) JJA - Method 2

(e) NDJFMA - Method 1 (f) MJJASO - Method 1

(g) NDJFMA - Method 2 (h) MJJASO - Method 2

Figure A.4. Same as Figure 5, but averaging 2 years. Extended seasons are also included.
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(a) DJF - Method 1 (b) JJA - Method 1

(c) DJF - Method 2 (d) JJA - Method 2

(e) NDJFMA - Method 1 (f) MJJASO - Method 1

(g) NDJFMA - Method 2 (h) MJJASO - Method 2

Figure A.5. Same as Figure 5, but averaging 3 years. Extended seasons are also included.
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(a) DJF - Method 1 (b) JJA - Method 1

(c) DJF - Method 2 (d) JJA - Method 2

(e) NDJFMA - Method 1 (f) MJJASO - Method 1

(g) NDJFMA - Method 2 (h) MJJASO - Method 2

Figure A.6. Same as Figure 5, but averaging 4 years. Extended seasons are also included.
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(a) DJF - Method 1 (b) JJA - Method 1

(c) DJF - Method 2 (d) JJA - Method 2

(e) NDJFMA - Method 1 (f) MJJASO - Method 1

(g) NDJFMA - Method 2 (h) MJJASO - Method 2

Figure A.7. Same as Figure 5, but averaging 5 years. Extended seasons are also included.
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Annex B: Additional figures for the decadal predictions

(a) NDJFMA - Method 1 (b) MJJASO - Method 1

(c) NDJFMA - Method 2 (d) MJJASO - Method 2

Figure B.1. Same as Figure 6, but for the extended seasons.
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(a) Year 2 (b) Year 3

(c) Year 4 (d) Year 5

Figure B.2. Same as Figure 7, but for years 2 to 5.
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(a) Years 1 to 2 (b) Years 1 to 3

(c) Years 1 to 4 (d) Years 1 to 5

(e) Years 2 to 3 (f) Years 2 to 4

Figure B.3. Same as Figure 7, but for 2 to 5 years averaged.
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(g) Years 2 to 5 (h) Years 3 to 4

(i) Years 3 to 5 (j) Years 4 to 5

Figure B.3. (Cont).
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(a) NDJFMA - Method 1 (b) MJJASO - Method 1

(c) NDJFMA - Method 2 (d) MJJASO - Method 2

Figure B.4. Same as Figure 8, but for the extended seasons.
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(a) DJF - Method 1 (b) JJA - Method 1

(c) DJF - Method 2 (d) JJA - Method 2

(e) NDJFMA - Method 1 (f) MJJASO - Method 1

(g) NDJFMA - Method 2 (h) MJJASO - Method 2

Figure B.5. Same as Figure 8, but for year 2. Extended seasons are also included.
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(a) DJF - Method 1 (b) JJA - Method 1

(c) DJF - Method 2 (d) JJA - Method 2

(e) NDJFMA - Method 1 (f) MJJASO - Method 1

(g) NDJFMA - Method 2 (h) MJJASO - Method 2

Figure B.6. Same as Figure 8, but for year 3. Extended seasons are also included.
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(a) DJF - Method 1 (b) JJA - Method 1

(c) DJF - Method 2 (d) JJA - Method 2

(e) NDJFMA - Method 1 (f) MJJASO - Method 1

(g) NDJFMA - Method 2 (h) MJJASO - Method 2

Figure B.7. Same as Figure 8, but for year 4. Extended seasons are also included.
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(a) DJF - Method 1 (b) JJA - Method 1

(c) DJF - Method 2 (d) JJA - Method 2

(e) NDJFMA - Method 1 (f) MJJASO - Method 1

(g) NDJFMA - Method 2 (h) MJJASO - Method 2

Figure B.8. Same as Figure 8, but for year 5. Extended seasons are also included.
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(a) DJF - Method 1 (b) JJA - Method 1

(c) DJF - Method 2 (d) JJA - Method 2

(e) NDJFMA - Method 1 (f) MJJASO - Method 1

(g) NDJFMA - Method 2 (h) MJJASO - Method 2

Figure B.9. Same as Figure 8, but averaging from year 1 to 2. Extended seasons are also included.
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(a) DJF - Method 1 (b) JJA - Method 1

(c) DJF - Method 2 (d) JJA - Method 2

(e) NDJFMA - Method 1 (f) MJJASO - Method 1

(g) NDJFMA - Method 2 (h) MJJASO - Method 2

Figure B.10. Same as Figure 8, but averaging from year 1 to 3. Extended seasons are also included.
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(a) DJF - Method 1 (b) JJA - Method 1

(c) DJF - Method 2 (d) JJA - Method 2

(e) NDJFMA - Method 1 (f) MJJASO - Method 1

(g) NDJFMA - Method 2 (h) MJJASO - Method 2

Figure B.11. Same as Figure 8, but averaging from year 1 to 4. Extended seasons are also included.
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(a) DJF - Method 1 (b) JJA - Method 1

(c) DJF - Method 2 (d) JJA - Method 2

(e) NDJFMA - Method 1 (f) MJJASO - Method 1

(g) NDJFMA - Method 2 (h) MJJASO - Method 2

Figure B.12. Same as Figure 8, but averaging from year 1 to 5. Extended seasons are also included.
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(a) DJF - Method 1 (b) JJA - Method 1

(c) DJF - Method 2 (d) JJA - Method 2

(e) NDJFMA - Method 1 (f) MJJASO - Method 1

(g) NDJFMA - Method 2 (h) MJJASO - Method 2

Figure B.13. Same as Figure 8, but averaging from year 2 to 3. Extended seasons are also included.



43

(a) DJF - Method 1 (b) JJA - Method 1

(c) DJF - Method 2 (d) JJA - Method 2

(e) NDJFMA - Method 1 (f) MJJASO - Method 1

(g) NDJFMA - Method 2 (h) MJJASO - Method 2

Figure B.14. Same as Figure 8, but averaging from year 2 to 4. Extended seasons are also included.
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(a) DJF - Method 1 (b) JJA - Method 1

(c) DJF - Method 2 (d) JJA - Method 2

(e) NDJFMA - Method 1 (f) MJJASO - Method 1

(g) NDJFMA - Method 2 (h) MJJASO - Method 2

Figure B.15. Same as Figure 8, but averaging from year 2 to 5. Extended seasons are also included.
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(a) DJF - Method 1 (b) JJA - Method 1

(c) DJF - Method 2 (d) JJA - Method 2

(e) NDJFMA - Method 1 (f) MJJASO - Method 1

(g) NDJFMA - Method 2 (h) MJJASO - Method 2

Figure B.16. Same as Figure 8, but averaging from year 3 to 4. Extended seasons are also included.
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(a) DJF - Method 1 (b) JJA - Method 1

(c) DJF - Method 2 (d) JJA - Method 2

(e) NDJFMA - Method 1 (f) MJJASO - Method 1

(g) NDJFMA - Method 2 (h) MJJASO - Method 2

Figure B.17. Same as Figure 8, but averaging from year 3 to 5. Extended seasons are also included.
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(a) DJF - Method 1 (b) JJA - Method 1

(c) DJF - Method 2 (d) JJA - Method 2

(e) NDJFMA - Method 1 (f) MJJASO - Method 1

(g) NDJFMA - Method 2 (h) MJJASO - Method 2

Figure B.18. Same as Figure 8, but averaging from year 4 to 5. Extended seasons are also included.
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Annex C: List of figures

1 (a) Predictability according to time scale of different components of the climate system
(Mariotti et al., 2018). (b) Time scales of weather, seasonal, inter-annual and decadal
predictions and climate projections and the impact of the initial values and boundary
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85.5oW-45oE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
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5 Time series of the frequencies of the simulated and observed weather regimes in winter
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The thin coloured lines correspond to each member, the thick coloured lines to the en-
semble mean and the black lines to the reanalysis. The time series correlations between
simulations and reanalysis are also displayed for each weather regime. . . . . . . . . . . . 9

6 Composites of the averaged sea level pressure anomalies (hPa) of the predicted weather
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decadal predictions for year 1. The frequency and the spatial correlation with the observed
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7 Box-and-whisker diagrams of the time series of each weather regime in short and extended
seasons with both methods in 1960-2010 period using decadal predictions for year 1. Grey
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predictions with method 1 and, on the right, with method 2. The filled dots represents
the mean of the time series and the unfilled dots the outliers. Decadal predictions boxes
have been made with the different members without averaging. . . . . . . . . . . . . . . . 13

8 Time series of the frequencies of the predicted and observed weather regimes in winter
and summer seasons with both methods for the 1960-2010 period using decadal predictions
for year 1. The thin coloured lines correspond to each member, the thick coloured lines
to the ensemble mean and the black lines to the reanalysis. The time series correlations
between predictions and reanalysis are displayed for each weather regime, also showing the
maximum and minimum value of the correlation calculated from each member separately. 14

9 Time series correlation between simulations and reanalysis of each weather regime. In the
horizontal axis, "No-Init_X" refers to historical simulations averaged X years, while "yX-
Z" refers to decadal predictions averaged from year X to year Z. In the vertical axis, the
number in brackets indicates the method used. Dots indicate the correlation is positive
and statistically significant at 95% confidence level with a t-test. . . . . . . . . . . . . . . 16

10 Time series correlation difference between historical simulations and decadal predictions.
In the horizontal axis, "yX-Z" refers to predictions averaged from year X to year Z. In the
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lation of the decadal prediction is statistically different to that of the historical simulation
at 95% confidence level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17



49

11 Time series correlation between the observed and predicted (for forecast year 2) SST and
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the 1962-2012 period have been used for the observed frequency of the regimes and the
observed SST, and data for the forecast year 2 of the simulations initialized in the years
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Annex D: List of acronyms
� ACC: Anomaly Correlation Coefficient
� AMO: Atlantic Multi-Decadal Oscillation
� AMOC: Atlantic Meridional Overturning Circulation
� AMV: Atlantic Multi-Decadal Variability
� AR: Atlantic Ridge
� BL: Blocking
� BSC: Barcelona Supercomputing Center
� CMIP: Coupled Model Intercomparison Project
� DJF: December, January and February
� DFS4.3: Drakkar Forcing Set, version 4.3
� EA: East Atlantic
� ECMWF: European Centre for Medium-Range Weather Forecasts
� EOF: Empirical Orthogonal Function
� ERSST.v4: Extended Reconstructed Sea Surface Temperature, version 4
� ESM: Earth System Model
� HTESSEL: Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land
� ICOADS: International Comprehensive Ocean–Atmosphere Dataset
� IFS: Integrated Forecasting System
� JJA: June, July and August
� JRA-55: Japanese 55-year Reanalysis
� LIM2: Louvain-la-Neuve Sea Ice Model, version 2
� LOESS: Locally Estimated Scatterplot Smoothing
� MJJASO: May, June, July, August, September and October
� NAO: North Atlantic Oscillation
� NDJFMA: November, December, January, February, March and April
� NEMO: Nucleus for European Modelling of the Ocean
� NOAA: National Oceanic and Atmospheric Administration
� OASIS: Ocean Atmospheric Sea Ice Soil
� ORAS4: Ocean ReAnalysis System 4
� PI: Pre-Industrial
� SST: Sea Surface Temperature
� TM5: Tracer Model, version 5
� UCM: Universidad Complutense de Madrid


	Introduction
	Decadal climate prediction
	Hindcasting and model initialization
	European weather regimes
	Objectives

	Data
	Region and period
	EC-Earth model
	Hindcast experiments
	JRA-55 reanalysis
	ERSST.v4 dataset

	Methodology
	Climatologies and anomalies
	K-means clustering algorithm
	Metrics

	Results and discussion
	Historical simulations (No-Init)
	Decadal predictions (Init)
	Impact of model initialization
	Teleconnections with the Sea Surface Temperature

	Conclusions
	Acknowledgements
	References
	Annex A: Additional figures for the historical simulations
	Annex B: Additional figures for the decadal predictions
	Annex C: List of figures
	Annex D: List of acronyms

