Atlantic Multidecadal Variability modulates the climate response to El Niño－Southern Oscillation in Australia

Paloma Trascasa－Castro ${ }^{1}$ ，Amanda Maycock ${ }^{1}$ ，Yohan Ruprich－Robert²，Marco Turco ${ }^{3}$ and Frederic Castruccio ${ }^{4}$

${ }^{1}$ University of Leeds，UK ${ }^{2}$ Barcelona Supercomputing Center，Spain ${ }^{3}$ Universidad de Murcia，Spain ${ }^{4}$ National Center for Atmospheric Research，USA【ee17pt＠leeds．ac．uk У＠PTrascasaCastro

Background

The Atlantic Multidecadal Variability（AMV）is a North－Atlantic basin wide sea surface temperature（SST）fluctuation on multidecadal timescales．

In boreal winter，warm AMV conditions（AMV＋）drive tropical Pacific cooling（Fig．2a），a northward shift of the Intertropical Convergence Zone（ITCZ）and a strengthening of the trade winds across the equatorial Pacific Ocean（Fig．2b）．These changes in the tropical Pacific mean state are a signature of a strengthened Walker circulation，a key mechanism in the tropical Pacific response to warm SSTs in the tropical／North Atlantic at interannual（Rodríguez－Fonseca et al．，2009）and multidecadal（Ruprich－ Robert et al．，2017）timescales．

Methods

Does AMV modulate ENSO variability？How？

We used output of idealized AMV simulations run with the NCAR－ CESM1 model as part of the Decadal Climate Prediction Project （DCPP）（Boer et al．2016）．The Observed AMV pattern（ERSSTv4）was imposed to preindustrial SSTs through surface flux restoring．

Fixed AMV pattern which does not vary in time nor account for AMV seasonality． 30 members $\times 9$ full winter seasons $=270$ years per AMV phase．

FIG．3．AMV + target pattern obtained from observations （ERSSTV4）．Filled contours correspond to SST anomalies（K）
（K） warm AMV phase．The negative AMV pattern（AMV－）is
equivalent in amplitude but with opposite sign SST anomalies．

AMV modulation

of El Niño＊\rightarrow
of El Niño＊${ }^{-}$
（El Niño $\left.\mathrm{AMV}^{+}-\mu_{\mathrm{AMV}+}\right)-\left(\right.$ El Niño $\left._{\mathrm{AMV}}-\mu_{\mathrm{AMV}}\right)$

AMV＋damps ENSO variability．．．
El Niño events in AMV＋have cooler SSTs（ $\sim 10 \%$ ）in the central（CP）and eastern（EP）equatorial Pacific and warmer SSTs in the west（WP）Pacific （Fig 4．a）．

Under AMV＋conditions，precipitation anomalies during El Niño（Fig．4．b） shift from CP to WP，with a decrease in CP precipitation anomaly of $\sim 40 \%$ ．

Fig．4．AMV modulation of El Niño（c）SST and（d）
precipitation．Black contours show composite El Ninio precipitation．Black contours show composite
anomaies from AMV－overlad in contours．

To find the cause of the change in ENSO SSTs between AMV＋and AMV－we used the Bjerknes Stability index（BJ）（Jin et al．2006）．

$$
\begin{gathered}
\text { Current damping Thermodynamic Zonal advective Ekman } \quad \text { Thermocline } \\
2 B J=-\left[a_{1} \frac{\left\langle\Delta \bar{u}_{E}\right.}{L_{x}}+a_{2} \frac{\left\langle\Delta \overline{L_{\nu}}\right\rangle_{E}}{L_{y}}\right]-\left[\alpha_{s}\right]+\left[\mu_{a} \beta_{u}\left\langle-\frac{\partial \overline{\mathrm{T}}}{\partial \mathrm{X}}\right)_{E}\right]+\left[\mu_{a} \beta_{w}\left(-\frac{\partial \overline{\mathrm{T}}}{\partial \mathrm{Z}}\right)_{E}\right]+\left[\mu_{a} \boldsymbol{\beta}_{h}\left\langle-\frac{\bar{w}}{\boldsymbol{H}_{1}}\right\rangle_{E} a_{h}\right]
\end{gathered}
$$

ENSO growth rate decreases by 30\％in AMV＋compared to AMV－
．．by weakening the thermocline feedback

b）AMV modulation of El Niño

FIG．5．Schematic overlay of（a）the mean state changes due to AMV in the equatorial Pacific in JASON and（b）the climate response to El Niño modulated by the AMV The main contributor to the decrease in ENSO growth rate is a weakened thermocline feedback，which dominates from boreal summer through early winter，directly affecting the ENSO growing season

During AMV＋（Fig．5a），equatorial wind stress anomalies are confined over the WP，making the EP thermocline less sensitive to wind stress（ $\downarrow \boldsymbol{\beta}_{\boldsymbol{h}}$ ，in agreement with Lübbecke and McPhaden（2014））．The East－West upper ocean heat content gradient increases and the thermocline steepens in AMV＋compared to AMV－

The trade wind slackening associated with El Niño are accompanied by a westward shift of the maximum SST and deep convection anomalies（Fig．5b）．

AMV modulation of ENSO impacts in Australia

FIG．6．El Niño（top）and La Niña（bottom）temperature anomalies（ K ）in filled contours and precipitation anomalies（ mm day ${ }^{-1}$ ）in black contours in DJF．Mean ENSO impacts are shown in a）and e），the difference between the absolute response to El Niño or La Niña in
AMV and AMV is shown in b）and f），the mean changes due to AMV appear in subpanels c）and g ）and the AMV modulation of EI Niño or La Niña impacts are shown in d）and h ）．

Over Eastern Australia and under warm AMV conditions，El Niño summers are cooler and wetter，and La Niña summers are hotter and drier \rightarrow AMV weakens ENSO impacts．

Over Southwest Australia，El Niño summers are hotter and drier and La Niña summers are cooler and wetter in AMV＋compared to AMV－\rightarrow AMV intensifies ENSO impacts．

We linked the surface response to anomalous subsidence associated with changes in large scale dynamics driven by AMV + ，rather than caused by local scale processes．

ENSO－driven burned area in SE Australia

0FIG 7．Study
domain consists
Empirical relationship based on the observed standardized precipitation domain consists
of
largely and evapotranspiration index（SPEI）estimates the extent of burned area forested areas in based on preconditioning factors such as changes in precipitation and $\begin{aligned} & \text { the southeast of } \\ & \text { Australia } \\ & \text { with }\end{aligned}$
temperature prior and during the fire season．
fire data from
1971 to 2020 ． SPEI $_{\underline{12(\text { Feb－Jan）}} \text { explains }} \mathbf{6 6 \%}$ of observed burned area in SE Australia．
observations $\|\underset{\sim}{\log [B A(t)]=\beta 1+\beta 2 \cdot S P E I(t) s c, m+\varepsilon(i, t)}\|$ CESM1 output

FIG 8．Boxplots of absolute（left）and anomalous（right）burned area（km ${ }^{\text {AMV }}$ ）in SE AMS Australia estimated using CESM1 output with the empirical SPEI－BA relationship．Red（blue）boxplots indicate values in
AMV（AMV－）．Numbers on top show the \％difference between El Niño（or La Niña）in AMV and AMV（AMV－）．Numbers on top show the $\%$ difference between En Nino
AMV－and their associated p value estimated with a double－sided t－test．

When El Niño co－occurs with AMV＋，burned area decreases significantly by 19\％（Fig． 8 left）．

However，if we remove the mean AMV signal we find that there＇s no statistically significant AMV modulation of the ENSO－fire relationship in SE Australia（Fig． 8 right）．

[^0] Geophysica Geophysical Research Letters
Ressancurumbren
Wamm Phen
 $=$ Themoine ereabak

回形事电

[^0]:

