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The	MareNostrum	4	Supercomputer	
The	most	heterogeneous	cluster	in	the	world	
aimed	at	genera8ng	scien8fic	knowledge 
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To	influence	the	way	machines	are	built,	programmed	
and	used:	programming	models,	performance	tools,	
Big	Data,	computer	architecture,	energy	efficiency 

To	develop	and	implement	global	and	
regional	state-of-the-art	models	for	short-
term	air	quality	forecast	and	long-term	

climate	applica1ons 

To	understand	living	organisms	by	means	of	
theore1cal	and	computa1onal	methods	

(molecular	modeling,	genomics,	proteomics) 

To	develop	scien1fic	and	engineering	soLware	to	
efficiently	exploit	super-compu1ng	capabili1es	

(biomedical,	geophysics,	atmospheric,	energy,	social	
and	economic	simula1ons) 
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Environmental	modelling	and	forecas1ng,	with	a	par1cular	focus	on	
weather,	climate	and	air	quality	

Director:	Francisco	Doblas-Reyes	

•  72	people	
•  Leading:	H2020	projects,	COPERNICUS	contracts,	

ERC	Consolidator	Grant	and	hosts	an	AXA	Chair	
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Cornerstones of Climate Prediction	

Meehl et al 2009 
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Cornerstones of Climate Prediction	

Correct Initialization of internal  
sources of predictability 

©National Research Council 

Current Meteorological state 

Meehl et al 2009 
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Cornerstones of Climate Prediction	

Correct Initialization of internal  
sources of predictability 

©National Research Council ©European Environment Agency ©NASA/SDO ©Ulet IfansastiGetty Images 

Solar Activity GHGs Volcanic Aerosols 

Good guess of future changes in the forcing 

Current Meteorological state 

Meehl et al 2009 
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Weather	predic8on 

Because	of	the	chao1c	nature	
of	atmospheric	variability 

Mariotti et al 2018 
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It	relies	on	the	longer	memory	of		
other	elements	of	the	climate	system	
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ocean sea	ice soil	moisture 
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Internal sources of Climate Predictability	
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Mariotti et al 2018 

The	atmosphere	can	also	provide	memory	
beyond	monthly	1mescales:		the	QBO 

©National Research Council 

atmosphere 

Equatorial Zonal Wind (m/s) 

Through its key role on wave propagation 
that can further impact the polar vortex strength,  
the Quasi-biennial Oscillation can contribute  
to Northern Hemisphere predictability at  
seasonal and interannual timescales. 

Monier & Weare (2011) 
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AMV Index PDO Index 

AMV Pattern PDO Pattern 

Cassou et al,  
Technical Note for DCPP-Component C 

Mariotti et al 2018 
The	ocean	exhibits	modes	of	decadal	variability	

both	in	the	Atlan8c	and	Pacific	basins 

ocean 
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Internal sources of Climate Predictability	
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sea	ice 

Blanchard-Wrigglesworth et al 2011 

 
Sea ice area 
[ september ] 

Re-emergence	
mechanisms	in	Arc1c	
sea	ice	can	provide	
memory	and	thus	
predictability	at	
seasonal	scales 

OBS 
CCSM 
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sea	ice 

Blanchard-Wrigglesworth et al 2011 

 
Sea ice area 
[ september ] 

Re-emergence	
mechanisms	in	Arc1c	
sea	ice	can	provide	
memory	and	thus	
predictability	at	
seasonal	scales 

OBS 
CCSM 

And	at	longer	8me-scales	Arc8c	sea	ice		
is	experiencing	a	long-term	decline 

© National Snow and Ice Data Center 

Arctic Sea Ice extent 
[ February] 
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Mariotti et al 2018 

sea	ice 

For example, on Europe at seasonal timescales 
through an influence of Barents-Kara Sea SIC 

changes on the North Atlantic Oscillation  

according to its limited significance (Fig. 4f) as com-
pared to December–January (Figs. 4b,d). The cross-
validated skill patterns of winter SAT and precipitation,
although showing positive scores over Europe, do not
achieve 95% confidence level using October SIC/BK
(Figs. 5c,e) and only some regions exceed the statisti-
cal threshold using November SIC/BK (Figs. 5d,f).
Note that although there are large areas of significant
linear correlation with the MCA-SIC/BKNOV expan-
sion coefficient (thin colored line), the prediction skill
is limited (thick black line). Nonetheless, this statisti-
cally significant skill of SAT over the central-western
Mediterranean basin and of precipitation over the
Iberian Peninsula represents the first hint that statis-
tical predictions of winter European climate based on
sea ice variability over the Barents–Kara Seas in
middle-to-late autumn could be skillful. These results
from empirical hindcasts support the recent finding

from dynamical hindcasts (Scaife et al. 2014) that sea
ice variability over the eastern Arctic in November
can be regarded as a predictability source for winter
climate conditions in the Euro-Atlantic sector.
On the other hand, October SIC/BK yields statisti-

cally significant skill of SLP over northern Eurasia
(Fig. 5a), which might be related to processes that
are not present in the relationship between November
SIC/BK and the winter NAO (Fig. 5b). Likely associ-
ated with the SLP skill, cross-validated hindcasts using
October SIC/BK also provide some significant skill for
SAT in central Eurasia (Fig. 5c), but not for pre-
cipitation (Fig. 5e). These results are in agreement
with Mori et al. (2014), who have found that recent
cold winters in Eurasia are related to recent reduction
of sea ice in the Barents–Kara Seas and more frequent
Eurasian blocking, but not to the winter NAO. It is
worth noting that the SLP skill of October SIC/BK

FIG. 3. As in Fig. 2, but for November SIC anomalies.

5200 JOURNAL OF CL IMATE VOLUME 28

García-Serrano et al 2014 

Predicted DJF  
Sea Level Pressure 

1st EOF of November  
Sea Ice Cover (SIC)  

While	many	studies	report	important	impacts	of	
Arc1c	sea	on	the	climate	of	the	mid-la8tudes 
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While	many	studies	report	important	impacts	of	
Arc1c	sea	on	the	climate	of	the	mid-la8tudes 

sea	ice 

Response to an overall Arctic sea ice reduction 

Or even explaining a long-term  
intensification of Californian droughts 

Arctic
sea-ice
loss

High latitude
energy
budget
changes 
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Cvijanovic et al 2017 
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Introducing our main prediction tool 

EC-EARTH  
Global Coupled model 

IFS (Atmospheric Model): 
      T255 (0.75º) ~80km 
      L91 (top 0.01hPa) ~mesosphere 
      IFS-HTESSEL (Land Model) 
 

NEMO (Ocean Model): 
      Nominal 1° Resolution   
      L75 levels (thousands km deep) 
      PISCES (Biogeochemistry Model) 
 

LIM (Sea-ice Model): 
      Multiple (5) ice category 

M
od

el
 C

om
po

ne
nt

s IFS-HTESSEL 
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Land reanalysis 
(ERA-Land) 

Ocean reanalysis 
(ORAS4) 

Atmosphere  
reanalysis 

(ERA-Interim) 

Sea Ice 
reanalysis 
(IC3/BSC) 

Initial Conditions produced  
in-house 
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Observa1ons	
	1960	 	2018	

Introduction to Climate Prediction Systems	



19 19	

Observa1ons	
	1960	

5-member	
predic1on	started	

1	Nov	1960	

	2018	

Introduction to Climate Prediction Systems	
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Introduction to Climate Prediction Systems	
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Observa1ons	
	1960	

5-member	
predic1on	started	

1	Nov	1962	
5-member	

predic1on	started	
1	Nov	1961	

5-member	
predic1on	started	

1	Nov	1960	

…	every	year	…	

Typical	predic1on	
targets	characteris1cs	
for	forecast	periods	like	
years	2-5	

	2018	

5-member	
predic1on	started	

1	Nov	2018	

Introduction to Climate Prediction Systems	
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Initialised forecasts with EC-Earth reproduce the global temperature,  and 
describe more accurately than the non-initialized ones the recent HIATUS 
period, which suggests a key contribution of internal climate variability 

Predictive skill of global mean surface-air temperature (Ec-Earth2.3) 

Two examples in decadal prediction (II) 

Guemas et al. (2013) 

Guemas et al, Nat Geo., 2013 
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Only in the Atlantic Ocean, the initialized forecasts show significant 
predictive skill and beat persistence, for forecast times of up to 10 yrs 

Two examples in decadal prediction (II) 

Guemas et al. (2013) 

Doblas-Reyes et al, Nat. Comm., 2013 
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Two examples in decadal prediction (II) 

Guemas et al. (2013) 
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Only in the Atlantic Ocean, the initialized forecasts show significant 
predictive skill and beat persistence, for forecast times of up to 10 yrs 

Predictive skill of modes of multi-annual climate variability (in CMIP5) 
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2015 predictions for 2016 SAT 

Smith et al. (2013, ClimDyn) 15 centers will contribute to Annual Decadal Climate Prediction Exchange 
4 applied for WMO-designation (BSC the only non meteorological center)  

Smith et al. (2013, ClimDyn) 

Towards Real Time Decadal Climate Prediction 



29 

2015 predictions for 2016 SAT 
NCEP/NCAR Reanalysis 

Jan-Dec 2016 SAT Anomaly 

Towards Real Time Decadal Climate Prediction 

Smith et al. (2013, ClimDyn) 15 centers will contribute to Annual Decadal Climate Prediction Exchange 
4 applied for WMO-designation (BSC the only non meteorological center)  



30 

Case	study:	Heat	wave	in	Eastern	Europe	during	summer	2010	
	

			Two	seasonal	forecasts	(ini1alized	May	1st):	
1)  Climatological	Land	Surface	Condi1ons	(CLIM)	
2)  Reanalysed	ERAi-Land	Condi1ons	(REAS) 

Seasonal Prediction: role of Land Surface 

Observed JJA SAT Odds* JJA SAT (CLIM) Odds JJA SAT (REAS) 

*Odds~Probability of a extreme event to occur wrt climatology 

Soil moisture initialization is therefore essential for the 
representation of such extreme events 

Prodhomme et al. (2016) 
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Two	ini8aliza8on	methods	for	sea-ice	(ini1alized	Nov	1st):	
1)  With	sea	ice	cover	assimila1on	(ASSIM)	
2)  Without	assimila1on	(NoASSIM) 

Seasonal Prediction: role of Sea Ice 

ASSIM		 Skill	Differerence	NoASSIM	

A
C

C
 o

f D
JF

 S
AT

 

A better sea-ice initialization can improve the skill in the 
Mediterranean area  and Scandinavia… 
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Two	ini8aliza8on	methods	for	sea-ice	(ini1alized	Nov	1st):	
1)  With	sea	ice	cover	assimila1on	(ASSIM)	
2)  Without	assimila1on	(NoASSIM) 

Seasonal Prediction: role of Sea Ice 
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… which might be related to improved NAO predictive skill 
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Seasonal Prediction: Interbasin Teleconnections 

Observed	teleconnec8on	of	
Atlan8c	Niño	with	winter	NIÑO	

Rodriguez-Fonseca et al. (2009) 
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Seasonal Prediction: Interbasin Teleconnections 

Observed	teleconnec8on	of	
Atlan8c	Niño	with	winter	NIÑO	

Rodriguez-Fonseca et al. (2009) 

Regression JJA ATL3 vs OND T2M	

Control	
Wind	forced	in	TA		
(to	correct	the	bias)	
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Seasonal Prediction: Interbasin Teleconnections 

Control	
Wind	forced	in	TA		
(to	correct	the	bias)	

	

Skill in ATL3 (1980-2009)	

Skill in NIÑO3 (1980-2009)	

A realistic representation of TA variability can improve the skill in ENSO 

Regression JJA ATL3 vs OND T2M	
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Example	of	climate	service	for	the	agriculture	sector:	wine	yields	
	

Engaging	with	the	users	to	
understand	their	needs Scien8fic	research	and	development	

of	tailored	indicators	

Tools	and	assessment	of	decision	making	processes	

Developing a 
Climate Service 

No se puede mostrar la 
imagen. Puede que su 
equipo no tenga 
suficiente memoria para 
abrir la imagen o que 
ésta esté dañada. 
Reinicie el equipo y, a 

Prediction of extreme drought (August 2017)  

Terrado,	M.,	 I.	Christel,	D.	Bojovic,	A.	Soret	and	F.	Doblas-Reyes	(2017)	“Climate	change	
communicaJon	and	user	engagement:	a	tool	to	an'cipate	climate	change”.	Published	in	
Handbook	of	Climate	Change	CommunicaJon	

Decadal climate prediction à Climate Services I	
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Bodegas Torres (and other wineries) are looking for new vineyard locations 
 

They have purchased high elevation terrains near the Pyrenees 
 

They are considering South America, in areas with no current wine production 

Decadal climate prediction à Climate Services II	

Bodegas Torres is thus requesting local climate information (with 
uncertainty assessments) relevant for the vegetative cycle of grapes. 
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Example	of	climate	service	for	the	agriculture	sector:	wine	yields	
	

Other applications from climate prediction	

Time 

Weather forecast Climate predictions 
Sub- 

seasonal Seasonal Decadal 
Climate projections 

1-15 days 10-60 days 1-15  months 2-30 years 20-100 years 

Applications Siting, choice of scion variety and 
rootstock. 

Assessment of water needs 

Wine style 

Grow cycle 
management 

Pathogen pressure, abiotic stresses  

Productivity, quality 

Harvest date and duration 

Crop forcing 

Adapted from: Antonio Graça, SOGRAPE VINHOS SA, 2014 
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Next decadal climate prediction activities 

Contributions to CMIP6  
With EC-Earth 3.2 in standard resolution (~1°) 

Simpkins (2017) 

DCPP Component A:  
Retrospective Predictions [1960-2017] 
 
DCPP Component B: 
Near-real time Forecasts [2018 onwards] 
 
DECK+ScenarioMIP: 
Historical+SPSS2-4.5 [1850-2100] 
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Next decadal climate prediction activities 

Contributions to CMIP6  
With EC-Earth 3.2 in standard resolution (~1°) 

DCPP Component A:  
Retrospective Predictions [1960-2017] 
 
DCPP Component B: 
Near-real time Forecasts [2018 onwards] 
 
DECK+ScenarioMIP: 
Historical+SPSS2-4.5 [1850-2100] 

Other H2020 activities 
With EC-Earth 3.2 in high resolution (~0.25°) 
 DCPP Component A-like:  

Retrospective Predictions [1960-2017] 

Simpkins (2017) 
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Next decadal climate prediction activities 

Contributions to CMIP6  
With EC-Earth 3.2 in standard resolution (~1°) 

DCPP Component A:  
Retrospective Predictions [1960-2017] 
 
DCPP Component B: 
Near-real time Forecasts [2018 onwards] 
 
DECK+ScenarioMIP: 
Historical+SPSS2-4.5 [1850-2100] 

Other CMIP6 contributions 
 VolMIP:  Evaluating the predictability associated to volcanoes 

C4MIP:   Investigating the predictability of the carbon cycle 
HiResMIP: Determining the advantages of super high resolution (1/12°) 
PaMIP: Constraining the long-term impacts due to Arctic Sea Ice decline 

PaMIP 

Simpkins (2017) 



Concluding	remarks		
Climate Prediction relies on the proper initialization of regions with 
internal seasonal to multi-annual climate variability, usually 
associated with persistence in the ocean, land cover, sea ice and 
even the atmosphere. 
 

Seasonal-to-Decadal Climate Predictions provide important strategic 
information to guide future decisions by stakeholders and 
policymakers 
 

Coordinated prediction efforts, like the multi-model decadal 
predictions within CMIP6, will provide an invaluable framework to: 

     - identify the regions/variables robustly predictable  

     - better understanding the origin of systematic errors 
 



Thank	you!		
pablo.ortega@bsc.es 
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Computational Earth Sciences Work Lines 

Performance Team 
Performance	analysis	and	op1miza1ons	for	parallel	compu8ng	 
Development	of	new	computa8onal	methods	and	
op8miza8ons	for	Earth	System	Models. 

Models and Workflows Team 
Development	of	HPC	user-friendly	so\ware	framework	 
Support	the	development	of	atmospheric	research	so\ware 

Data and Diagnostics Team 
Big	Data	and	machine	learning	research	for	Earth	Sciences 
Provision	of	data	services 
Improvement	of	visualiza8on	tools 
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Sea ice and ocean variability, prediction and impacts 

Climate model initialization and data assimilation 

Tropical cyclones 

Ocean biogeochemistry and climate feedbacks 

Inter-basin teleconnections 

Bias development and initial shock mechanisms 

Climate Prediction Research Lines 
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Atmospheric Composition Research Lines 

Development of high-quality and high-resolution 
emission models of primary gases and aerosols 

Prediction and understanding of the behaviour of 
pollutants in the atmosphere, with special 
emphasis on urban areas 

Assessment of sand and dust storm impacts upon 
key sectors of society and economy 

Impact of aerosol-radiation-cloud interactions 
upon weather forecasts and regional climate 

Assimilation of observations into atmospheric 
chemistry models 
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Earth System Services Research Lines 

Prediction tools/visualization 

Dissemination material 

Wind energy 

Agriculture  

Urban development 

Dust Storms 

Climate Services Knowledge and 
Technology Transfer Air quality Services 



Job	Opportuni8es	at	BSC	
hfps://www.bsc.es/about-bsc/

employment/vacancies	



Job	Opportuni8es:	
-  AC:	PhD	on	soil	dust	emission:	field	campaigns,	theory	&	modeling	
-  CP:	Climate	Forecaster	(post-doc)	
-  ESS:	Air	quality	Analyst	(post-doc)	
	
	Poten8al	topics	for	research	internships:		

-  Analysis	and	evalua1on	of	HR	air	quality	simula1ons	over	coastal	
areas:	iden1fica1on	of	limi1ng	factors	concerning	the	meteorology	
and	chemistry	(AC)	

-  Simula1on	and	evalua1on	of	par1culate	mafer	concentra1ons	at	
surface	level	from	global	aerosol	models	(AC).	

-  Analysis	of	the	uncertain1es	in	the	observa1onal	products	of	ocean	
biogeochemistry:	primary	produc1on,	carbon	uptake	(CP)	

-  Sensi1vity	of	predic1on	skill	to	the	ini1aliza1on	of	the	coupler	(CES,CP)	
-  Tes1ng	the	reliability	of	atmospheric	nudging	in	the	CMIP6	coupled	

version	of	EC-Earth	(CES,CP)	



Weather	vs	Climate	predic8ons	

Coupled	climate	model 
	(atmosphere	+	land	+	ocean	+	sea	ice) 

The	temperature	in	Albacete	on	27th	February 
v  What	we	can	NOT	expect	from	climate	predic'ons 

ü  What	we	can	expect	from	climate	predic'ons 
How	likely	next	winter	is	going	to	be	colder/warmer	than	normal 

ini1alised	with	
current	
observa1ons 

Predic1ons	for	the	next	few	week/	season 



Temporal	Scales	

FORECAST PREDICTION PROJECTION 

Atmos. chemistry 

Meteorology 

Climate projections 

Climate predictions 
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A key time for Decadal Climate Prediction	

Near-Term Climate Prediction  
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Increment of resolution 
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Mean	SST	anomaly	-	first	forecast	year	following	the	Agung	(1963),	El	
Chichon	(1982)	and	Pinatubo	(1991)	erup1ons	in	EC-EARTH2.3	
decadal	hindcasts.	S1ppling	95%	sta1s1cally	significant	differences. 
 

Impact of volcanic aerosols 



RESILIENCE	prototype	for	wind		

http://www.bsc.es/ess/resilience/ 



CALIOPE	air	quality	opera8onal	forecast	

Multiscale models from global to local scales 

In the media 

Web / App 



www.seasonalhurricanepredictions.org 

Seasonal	predic8ons	for	hurricanes	


